In the European Roadmap towards thermonuclear fusion power production, studying the controlled exhaust of energy and particles from a fusion reactor is a top priority research item. This is the main goal of the Divertor Tokamak Test (DTT) facility, a D-shaped superconducting tokamak (R = 2.19 m, a = 0.70 m, BT <= 6 T, Ip <= 5.5 MA, pulse length <= 100 s, auxiliary heating <= 45 MW, W first wall and divertor), whose construction is starting in Frascati. In order to support the device design and to help the elaboration of a DTT scientific work-programme, it is a key priority to achieve multi-channel integrated modelling of DTT scenarios based on state-of-art first-principle quasi-linear transport models. First modelling results of the main DTT scenarios are presented here. Steady-state profiles of ion and electron temperatures, densities, rotation, and current density were predicted with a calculated self-consistent equilibrium, with turbulent heat and particle transport calculated by the TGLF or QLK transport models, and with heating modelled self-consistently. As a result of this work, the heating mix was defined and reference profiles have been become available.
First-principle integrated modelling of the main scenarios of the new Divertor Tokamak Test facility
Casiraghi I;Mantica P;Baiocchi B;Mariani A;Vincenzi P;Agostinetti P;Figini L;Granucci G;Innocente P;Valisa M
2021
Abstract
In the European Roadmap towards thermonuclear fusion power production, studying the controlled exhaust of energy and particles from a fusion reactor is a top priority research item. This is the main goal of the Divertor Tokamak Test (DTT) facility, a D-shaped superconducting tokamak (R = 2.19 m, a = 0.70 m, BT <= 6 T, Ip <= 5.5 MA, pulse length <= 100 s, auxiliary heating <= 45 MW, W first wall and divertor), whose construction is starting in Frascati. In order to support the device design and to help the elaboration of a DTT scientific work-programme, it is a key priority to achieve multi-channel integrated modelling of DTT scenarios based on state-of-art first-principle quasi-linear transport models. First modelling results of the main DTT scenarios are presented here. Steady-state profiles of ion and electron temperatures, densities, rotation, and current density were predicted with a calculated self-consistent equilibrium, with turbulent heat and particle transport calculated by the TGLF or QLK transport models, and with heating modelled self-consistently. As a result of this work, the heating mix was defined and reference profiles have been become available.File | Dimensione | Formato | |
---|---|---|---|
prod_455975-doc_176361.pdf
solo utenti autorizzati
Descrizione: First_principle integrated modelling of the main scenarios of the new Divertor Tokamak Test facility
Tipologia:
Versione Editoriale (PDF)
Dimensione
168.56 kB
Formato
Adobe PDF
|
168.56 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.