The roughness of metallic surfaces has a vital impact on the erosion of plasma-facing materials. Roughness determines the effective sputtering yield Yeff of the facing material. The angular/energy distribution of sputtered particles, and the spatial erosion and deposition distribution. The model for simulation the effect of the surface roughness was earlier implemented into the 3D Monte-Carlo code ERO2.0 and validated using results of ion beam experiments and experiments in the linear plasma device PSI-2. In the present study the developed ERO2.0 surface morphology model was applied to the JET-ILW tungsten (W) divertor consisting of smooth bulk W and W-coated CFC components. Influence of the surface roughness on the W erosion as well as on the transport of sputtered material in conditions of inclined magnetic field was investigated. Simulation results are in a good agreement with existing experimental findings. © 2021

The impact of surface morphology on the erosion of metallic surfaces - Modelling with the 3D Monte-Carlo code ERO2.0

EVassallo;Passoni M;Dellasega D;
2021

Abstract

The roughness of metallic surfaces has a vital impact on the erosion of plasma-facing materials. Roughness determines the effective sputtering yield Yeff of the facing material. The angular/energy distribution of sputtered particles, and the spatial erosion and deposition distribution. The model for simulation the effect of the surface roughness was earlier implemented into the 3D Monte-Carlo code ERO2.0 and validated using results of ion beam experiments and experiments in the linear plasma device PSI-2. In the present study the developed ERO2.0 surface morphology model was applied to the JET-ILW tungsten (W) divertor consisting of smooth bulk W and W-coated CFC components. Influence of the surface roughness on the W erosion as well as on the transport of sputtered material in conditions of inclined magnetic field was investigated. Simulation results are in a good agreement with existing experimental findings. © 2021
2021
Istituto per la Scienza e Tecnologia dei Plasmi - ISTP
3D modeling
Angular distribution
ErosionIon beams
Monte Carlo methods
MorphologySputtering
Surface measurement
Surface morphology
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/401254
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact