We use the k . p theory and the envelope function approach to evaluate the Rashba spin-orbit coupling induced in a semiconductor nanowire by a magnetic field at different orientations, taking explicitly into account the prismatic symmetry of typical nanocrystals. We make the case for the strongly spin-orbit-coupled InAs semiconductor nanowires and investigate the anisotropy of the spin-orbit constant with respect to the field direction. At sufficiently high magnetic fields perpendicular to the nanowire, a sixfold anisotropy results from the interplay between the orbital effect of field and the prismatic symmetry of the nanowire. A backgate potential, breaking the native symmetry of the nanocrystal, couples to the magnetic field inducing a twofold anisotropy, with the spin-orbit coupling being maximized or minimized depending on the relative orientation of the two fields. We also investigate in-wire field configurations, which shows a trivial twofold symmetry when the field is rotated off the axis. However, isotropic spin-orbit coupling is restored if a sufficiently high gate potential is applied. Our calculations are shown to agree with recent experimental analysis of the vectorial character of the spin-orbit coupling for the same nanomaterial, providing a microscopic interpretation of the latter.
Anisotropy of the spin-orbit coupling driven by a magnetic field in InAs nanowires
Bertoni A;Goldoni G
2021
Abstract
We use the k . p theory and the envelope function approach to evaluate the Rashba spin-orbit coupling induced in a semiconductor nanowire by a magnetic field at different orientations, taking explicitly into account the prismatic symmetry of typical nanocrystals. We make the case for the strongly spin-orbit-coupled InAs semiconductor nanowires and investigate the anisotropy of the spin-orbit constant with respect to the field direction. At sufficiently high magnetic fields perpendicular to the nanowire, a sixfold anisotropy results from the interplay between the orbital effect of field and the prismatic symmetry of the nanowire. A backgate potential, breaking the native symmetry of the nanocrystal, couples to the magnetic field inducing a twofold anisotropy, with the spin-orbit coupling being maximized or minimized depending on the relative orientation of the two fields. We also investigate in-wire field configurations, which shows a trivial twofold symmetry when the field is rotated off the axis. However, isotropic spin-orbit coupling is restored if a sufficiently high gate potential is applied. Our calculations are shown to agree with recent experimental analysis of the vectorial character of the spin-orbit coupling for the same nanomaterial, providing a microscopic interpretation of the latter.File | Dimensione | Formato | |
---|---|---|---|
prod_451417-doc_164595.pdf
solo utenti autorizzati
Descrizione: Anisotropy of the spin-orbit coupling driven by a magnetic field in InAs nanowires
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
4.08 MB
Formato
Adobe PDF
|
4.08 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2011.10483v1.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Altro tipo di licenza
Dimensione
6.65 MB
Formato
Adobe PDF
|
6.65 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.