In this work, results related to the temperature influence on the homo-epitaxial growth process of 3C-SiC is presented. The seed for the epitaxial layer was obtained by an innovative technique based on silicon melting: after the first step of the hetero-epitaxial growth process of 3C-SiC on a Si substrate, Si melts, and the remaining freestanding SiC layer was used as a seed layer for the homo-epitaxial growth. Different morphological analyses indicate that the growth temperature and the growth rate play a fundamental role in the stacking faults density. In details, X-ray diffraction and micro-Raman analysis show the strict relationship between growth temperature, crystal quality, and doping incorporation in the homo-epitaxial chemical vapor deposition CVD growth process of a 3C-SiC wafer. Furthermore, photoluminescence spectra show a considerable reduction of point defects during homo-epitaxy at high temperatures.

Temperature Investigation on 3C-SiC Homo-Epitaxy on Four-Inch Wafers

Zimbone Massimo;Alberti Alessandra;La Via Francesco
2019

Abstract

In this work, results related to the temperature influence on the homo-epitaxial growth process of 3C-SiC is presented. The seed for the epitaxial layer was obtained by an innovative technique based on silicon melting: after the first step of the hetero-epitaxial growth process of 3C-SiC on a Si substrate, Si melts, and the remaining freestanding SiC layer was used as a seed layer for the homo-epitaxial growth. Different morphological analyses indicate that the growth temperature and the growth rate play a fundamental role in the stacking faults density. In details, X-ray diffraction and micro-Raman analysis show the strict relationship between growth temperature, crystal quality, and doping incorporation in the homo-epitaxial chemical vapor deposition CVD growth process of a 3C-SiC wafer. Furthermore, photoluminescence spectra show a considerable reduction of point defects during homo-epitaxy at high temperatures.
2019
3C-SiC homo-epitaxy
CVD
bulk growth
growth temperature
KOH
stacking faults
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/402043
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact