OWL ontologies are nowadays a quite popular way to describe structured knowledge in terms of classes, relations among classes and class instances. In this paper, given an OWL ontology and a target class T, we address the problem of learning fuzzy concept inclusion axioms that describe sufficient conditions for being an individual instance of T (and to which degree). To do so, we present FUZZY OWL-BOOST that relies on the Real AdaBoost boosting algorithm adapted to the (fuzzy) OWL case. We illustrate its effectiveness by means of an experimentation with several ontologies.
Fuzzy OWL-Boost: learning fuzzy concept inclusions via real-valued boosting
Cardillo FA;Straccia U
2021
Abstract
OWL ontologies are nowadays a quite popular way to describe structured knowledge in terms of classes, relations among classes and class instances. In this paper, given an OWL ontology and a target class T, we address the problem of learning fuzzy concept inclusion axioms that describe sufficient conditions for being an individual instance of T (and to which degree). To do so, we present FUZZY OWL-BOOST that relies on the Real AdaBoost boosting algorithm adapted to the (fuzzy) OWL case. We illustrate its effectiveness by means of an experimentation with several ontologies.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_458770-doc_178526.pdf
accesso aperto
Descrizione: Preprint - Fuzzy OWL-Boost: learning fuzzy concept inclusions via real-valued boosting
Tipologia:
Documento in Pre-print
Licenza:
Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione
778.07 kB
Formato
Adobe PDF
|
778.07 kB | Adobe PDF | Visualizza/Apri |
|
prod_458770-doc_183317.pdf
non disponibili
Descrizione: Fuzzy OWL-Boost: learning fuzzy concept inclusions via real-valued boosting
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.2 MB
Formato
Adobe PDF
|
1.2 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
Straccia_Fuzzyada_AAM.pdf
accesso aperto
Descrizione: Fuzzy OWL-Boost: learning fuzzy concept inclusions via real-valued boosting
Tipologia:
Documento in Post-print
Licenza:
Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione
326.17 kB
Formato
Adobe PDF
|
326.17 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


