OWL ontologies are nowadays a quite popular way to describe structured knowledge in terms of classes, relations among classes and class instances. In this paper, given an OWL ontology and a target class T, we address the problem of learning fuzzy concept inclusion axioms that describe sufficient conditions for being an individual instance of T (and to which degree). To do so, we present FUZZY OWL-BOOST that relies on the Real AdaBoost boosting algorithm adapted to the (fuzzy) OWL case. We illustrate its effectiveness by means of an experimentation with several ontologies.

Fuzzy OWL-Boost: learning fuzzy concept inclusions via real-valued boosting

Cardillo FA;Straccia U
2021

Abstract

OWL ontologies are nowadays a quite popular way to describe structured knowledge in terms of classes, relations among classes and class instances. In this paper, given an OWL ontology and a target class T, we address the problem of learning fuzzy concept inclusion axioms that describe sufficient conditions for being an individual instance of T (and to which degree). To do so, we present FUZZY OWL-BOOST that relies on the Real AdaBoost boosting algorithm adapted to the (fuzzy) OWL case. We illustrate its effectiveness by means of an experimentation with several ontologies.
Campo DC Valore Lingua
dc.authority.ancejournal FUZZY SETS AND SYSTEMS en
dc.authority.orgunit Istituto di linguistica computazionale "Antonio Zampolli" - ILC en
dc.authority.orgunit Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI en
dc.authority.people Cardillo FA en
dc.authority.people Straccia U en
dc.collection.id.s b3f88f24-048a-4e43-8ab1-6697b90e068e *
dc.collection.name 01.01 Articolo in rivista *
dc.contributor.appartenenza Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI *
dc.contributor.appartenenza Istituto di linguistica computazionale "Antonio Zampolli" - ILC *
dc.contributor.appartenenza.mi 918 *
dc.contributor.appartenenza.mi 973 *
dc.contributor.area Non assegn *
dc.contributor.area Non assegn *
dc.date.accessioned 2024/02/20 20:38:38 -
dc.date.available 2024/02/20 20:38:38 -
dc.date.issued 2021 -
dc.description.abstracteng OWL ontologies are nowadays a quite popular way to describe structured knowledge in terms of classes, relations among classes and class instances. In this paper, given an OWL ontology and a target class T, we address the problem of learning fuzzy concept inclusion axioms that describe sufficient conditions for being an individual instance of T (and to which degree). To do so, we present FUZZY OWL-BOOST that relies on the Real AdaBoost boosting algorithm adapted to the (fuzzy) OWL case. We illustrate its effectiveness by means of an experimentation with several ontologies. -
dc.description.affiliations CNR-ILC, Pisa, Italy; CNR-ISTI, Pisa, Italy -
dc.description.allpeople Cardillo, Fa; Straccia, U -
dc.description.allpeopleoriginal Cardillo F.A.; Straccia U. en
dc.description.fulltext partially_open en
dc.description.note Version of Record: Fuzzy Sets and Systems, vol. 438 (2022) pp. 164-186 en
dc.description.numberofauthors 2 -
dc.identifier.doi 10.1016/j.fss.2021.07.002 en
dc.identifier.isi WOS:000796486300009 en
dc.identifier.scopus 2-s2.0-85111013597 en
dc.identifier.uri https://hdl.handle.net/20.500.14243/402940 -
dc.identifier.url https://www.sciencedirect.com/science/article/abs/pii/S0165011421002426 en
dc.language.iso eng en
dc.miur.last.status.update 2024-09-26T20:21:42Z *
dc.relation.firstpage 164 en
dc.relation.issue 2022 en
dc.relation.lastpage 186 en
dc.relation.medium ELETTRONICO en
dc.relation.numberofpages 23 en
dc.relation.volume 438 en
dc.subject.keywordseng OWL Ontology -
dc.subject.keywordseng Machine Learning -
dc.subject.keywordseng Fuzzy Logic -
dc.subject.keywordseng Boosting -
dc.subject.singlekeyword OWL Ontology *
dc.subject.singlekeyword Machine Learning *
dc.subject.singlekeyword Fuzzy Logic *
dc.subject.singlekeyword Boosting *
dc.title Fuzzy OWL-Boost: learning fuzzy concept inclusions via real-valued boosting en
dc.type.driver info:eu-repo/semantics/article -
dc.type.full 01 Contributo su Rivista::01.01 Articolo in rivista it
dc.type.impactfactor si en
dc.type.miur 262 -
dc.type.referee Sì, ma tipo non specificato en
dc.ugov.descaux1 458770 -
iris.isi.extIssued 2022 -
iris.isi.extTitle Fuzzy OWL-Boost: Learning fuzzy concept inclusions via real-valued boosting -
iris.mediafilter.data 2025/03/21 03:39:08 *
iris.orcid.lastModifiedDate 2025/03/13 13:53:35 *
iris.orcid.lastModifiedMillisecond 1741870415140 *
iris.scopus.extIssued 2022 -
iris.scopus.extTitle Fuzzy OWL-Boost: Learning fuzzy concept inclusions via real-valued boosting -
iris.sitodocente.maxattempts 1 -
iris.unpaywall.bestoahost repository *
iris.unpaywall.bestoaversion submittedVersion *
iris.unpaywall.doi 10.1016/j.fss.2021.07.002 *
iris.unpaywall.hosttype repository *
iris.unpaywall.isoa true *
iris.unpaywall.journalisindoaj false *
iris.unpaywall.landingpage https://arxiv.org/abs/2008.05297 *
iris.unpaywall.metadataCallLastModified 04/05/2025 05:41:40 -
iris.unpaywall.metadataCallLastModifiedMillisecond 1746330100050 -
iris.unpaywall.oastatus green *
iris.unpaywall.pdfurl https://arxiv.org/pdf/2008.05297 *
isi.authority.ancejournal FUZZY SETS AND SYSTEMS###0165-0114 *
isi.category XY *
isi.category EX *
isi.category PN *
isi.contributor.affiliation Consiglio Nazionale delle Ricerche (CNR) -
isi.contributor.affiliation Consiglio Nazionale delle Ricerche (CNR) -
isi.contributor.country Italy -
isi.contributor.country Italy -
isi.contributor.name Franco Alberto -
isi.contributor.name Umberto -
isi.contributor.researcherId CJZ-8798-2022 -
isi.contributor.researcherId B-5373-2015 -
isi.contributor.subaffiliation Ist Linguist Computaz -
isi.contributor.subaffiliation Ist Sci & Tecnol Informaz -
isi.contributor.surname Cardillo -
isi.contributor.surname Straccia -
isi.date.issued 2022 *
isi.description.abstracteng OWL ontologies are nowadays a quite popular way to describe structured knowledge in terms of classes, relations among classes and class instances. In this paper, given an OWL ontology and a target class T, we address the problem of learning fuzzy concept inclusion axioms that describe sufficient conditions for being an individual instance of T (and to which degree). To do so, we present FUZZY OWL-BOOST that relies on the Real AdaBoost boosting algorithm adapted to the (fuzzy) OWL case. We illustrate its effectiveness by means of an experimentation with several ontologies. (c) 2021 Elsevier B.V. All rights reserved. *
isi.description.allpeopleoriginal Cardillo, FA; Straccia, U; *
isi.document.sourcetype WOS.SCI *
isi.document.type Article *
isi.document.types Article *
isi.identifier.doi 10.1016/j.fss.2021.07.002 *
isi.identifier.eissn 1872-6801 *
isi.identifier.isi WOS:000796486300009 *
isi.journal.journaltitle FUZZY SETS AND SYSTEMS *
isi.journal.journaltitleabbrev FUZZY SET SYST *
isi.language.original English *
isi.publisher.place RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS *
isi.relation.firstpage 164 *
isi.relation.lastpage 186 *
isi.relation.volume 438 *
isi.title Fuzzy OWL-Boost: Learning fuzzy concept inclusions via real-valued boosting *
scopus.authority.ancejournal FUZZY SETS AND SYSTEMS###0165-0114 *
scopus.category 2609 *
scopus.category 1702 *
scopus.contributor.affiliation CNR -
scopus.contributor.affiliation CNR -
scopus.contributor.afid 60008941 -
scopus.contributor.afid 60085207 -
scopus.contributor.auid 57191090133 -
scopus.contributor.auid 12760566600 -
scopus.contributor.country Italy -
scopus.contributor.country Italy -
scopus.contributor.dptid -
scopus.contributor.dptid -
scopus.contributor.name Franco Alberto -
scopus.contributor.name Umberto -
scopus.contributor.subaffiliation Istituto di Linguistica Computazionale; -
scopus.contributor.subaffiliation Istituto di Scienza e Tecnologie dell'Informazione; -
scopus.contributor.surname Cardillo -
scopus.contributor.surname Straccia -
scopus.date.issued 2022 *
scopus.description.abstracteng OWL ontologies are nowadays a quite popular way to describe structured knowledge in terms of classes, relations among classes and class instances. In this paper, given an OWL ontology and a target class T, we address the problem of learning fuzzy concept inclusion axioms that describe sufficient conditions for being an individual instance of T (and to which degree). To do so, we present FUZZY OWL-BOOST that relies on the Real AdaBoost boosting algorithm adapted to the (fuzzy) OWL case. We illustrate its effectiveness by means of an experimentation with several ontologies. *
scopus.description.allpeopleoriginal Cardillo F.A.; Straccia U. *
scopus.differences scopus.subject.keywords *
scopus.differences scopus.date.issued *
scopus.document.type ar *
scopus.document.types ar *
scopus.funding.funders 100010661 - Horizon 2020 Framework Programme; 100010661 - Horizon 2020 Framework Programme; 501100007601 - Horizon 2020; *
scopus.funding.ids 952215; *
scopus.identifier.doi 10.1016/j.fss.2021.07.002 *
scopus.identifier.pui 2013697005 *
scopus.identifier.scopus 2-s2.0-85111013597 *
scopus.journal.sourceid 26529 *
scopus.language.iso eng *
scopus.publisher.name Elsevier B.V. *
scopus.relation.firstpage 164 *
scopus.relation.lastpage 186 *
scopus.relation.volume 438 *
scopus.subject.keywords Concept inclusion axioms; Fuzzy logic; Machine learning; OWL 2 ontologies; Real-valued AdaBoost; *
scopus.title Fuzzy OWL-Boost: Learning fuzzy concept inclusions via real-valued boosting *
scopus.titleeng Fuzzy OWL-Boost: Learning fuzzy concept inclusions via real-valued boosting *
Appare nelle tipologie: 01.01 Articolo in rivista
File in questo prodotto:
File Dimensione Formato  
prod_458770-doc_178526.pdf

accesso aperto

Descrizione: Preprint - Fuzzy OWL-Boost: learning fuzzy concept inclusions via real-valued boosting
Tipologia: Documento in Pre-print
Licenza: Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione 778.07 kB
Formato Adobe PDF
778.07 kB Adobe PDF Visualizza/Apri
prod_458770-doc_183317.pdf

non disponibili

Descrizione: Fuzzy OWL-Boost: learning fuzzy concept inclusions via real-valued boosting
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Straccia_Fuzzyada_AAM.pdf

accesso aperto

Descrizione: Fuzzy OWL-Boost: learning fuzzy concept inclusions via real-valued boosting
Tipologia: Documento in Post-print
Licenza: Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione 326.17 kB
Formato Adobe PDF
326.17 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/402940
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact