OWL ontologies are nowadays a quite popular way to describe structured knowledge in terms of classes, relations among classes and class instances. In this paper, given an OWL ontology and a target class T, we address the problem of learning fuzzy concept inclusion axioms that describe sufficient conditions for being an individual instance of T (and to which degree). To do so, we present FUZZY OWL-BOOST that relies on the Real AdaBoost boosting algorithm adapted to the (fuzzy) OWL case. We illustrate its effectiveness by means of an experimentation with several ontologies.
Fuzzy OWL-Boost: learning fuzzy concept inclusions via real-valued boosting
Cardillo FA;Straccia U
2021
Abstract
OWL ontologies are nowadays a quite popular way to describe structured knowledge in terms of classes, relations among classes and class instances. In this paper, given an OWL ontology and a target class T, we address the problem of learning fuzzy concept inclusion axioms that describe sufficient conditions for being an individual instance of T (and to which degree). To do so, we present FUZZY OWL-BOOST that relies on the Real AdaBoost boosting algorithm adapted to the (fuzzy) OWL case. We illustrate its effectiveness by means of an experimentation with several ontologies.| Campo DC | Valore | Lingua |
|---|---|---|
| dc.authority.ancejournal | FUZZY SETS AND SYSTEMS | en |
| dc.authority.orgunit | Istituto di linguistica computazionale "Antonio Zampolli" - ILC | en |
| dc.authority.orgunit | Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI | en |
| dc.authority.people | Cardillo FA | en |
| dc.authority.people | Straccia U | en |
| dc.collection.id.s | b3f88f24-048a-4e43-8ab1-6697b90e068e | * |
| dc.collection.name | 01.01 Articolo in rivista | * |
| dc.contributor.appartenenza | Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI | * |
| dc.contributor.appartenenza | Istituto di linguistica computazionale "Antonio Zampolli" - ILC | * |
| dc.contributor.appartenenza.mi | 918 | * |
| dc.contributor.appartenenza.mi | 973 | * |
| dc.contributor.area | Non assegn | * |
| dc.contributor.area | Non assegn | * |
| dc.date.accessioned | 2024/02/20 20:38:38 | - |
| dc.date.available | 2024/02/20 20:38:38 | - |
| dc.date.issued | 2021 | - |
| dc.description.abstracteng | OWL ontologies are nowadays a quite popular way to describe structured knowledge in terms of classes, relations among classes and class instances. In this paper, given an OWL ontology and a target class T, we address the problem of learning fuzzy concept inclusion axioms that describe sufficient conditions for being an individual instance of T (and to which degree). To do so, we present FUZZY OWL-BOOST that relies on the Real AdaBoost boosting algorithm adapted to the (fuzzy) OWL case. We illustrate its effectiveness by means of an experimentation with several ontologies. | - |
| dc.description.affiliations | CNR-ILC, Pisa, Italy; CNR-ISTI, Pisa, Italy | - |
| dc.description.allpeople | Cardillo, Fa; Straccia, U | - |
| dc.description.allpeopleoriginal | Cardillo F.A.; Straccia U. | en |
| dc.description.fulltext | partially_open | en |
| dc.description.note | Version of Record: Fuzzy Sets and Systems, vol. 438 (2022) pp. 164-186 | en |
| dc.description.numberofauthors | 2 | - |
| dc.identifier.doi | 10.1016/j.fss.2021.07.002 | en |
| dc.identifier.isi | WOS:000796486300009 | en |
| dc.identifier.scopus | 2-s2.0-85111013597 | en |
| dc.identifier.uri | https://hdl.handle.net/20.500.14243/402940 | - |
| dc.identifier.url | https://www.sciencedirect.com/science/article/abs/pii/S0165011421002426 | en |
| dc.language.iso | eng | en |
| dc.miur.last.status.update | 2024-09-26T20:21:42Z | * |
| dc.relation.firstpage | 164 | en |
| dc.relation.issue | 2022 | en |
| dc.relation.lastpage | 186 | en |
| dc.relation.medium | ELETTRONICO | en |
| dc.relation.numberofpages | 23 | en |
| dc.relation.volume | 438 | en |
| dc.subject.keywordseng | OWL Ontology | - |
| dc.subject.keywordseng | Machine Learning | - |
| dc.subject.keywordseng | Fuzzy Logic | - |
| dc.subject.keywordseng | Boosting | - |
| dc.subject.singlekeyword | OWL Ontology | * |
| dc.subject.singlekeyword | Machine Learning | * |
| dc.subject.singlekeyword | Fuzzy Logic | * |
| dc.subject.singlekeyword | Boosting | * |
| dc.title | Fuzzy OWL-Boost: learning fuzzy concept inclusions via real-valued boosting | en |
| dc.type.driver | info:eu-repo/semantics/article | - |
| dc.type.full | 01 Contributo su Rivista::01.01 Articolo in rivista | it |
| dc.type.impactfactor | si | en |
| dc.type.miur | 262 | - |
| dc.type.referee | Sì, ma tipo non specificato | en |
| dc.ugov.descaux1 | 458770 | - |
| iris.isi.extIssued | 2022 | - |
| iris.isi.extTitle | Fuzzy OWL-Boost: Learning fuzzy concept inclusions via real-valued boosting | - |
| iris.mediafilter.data | 2025/03/21 03:39:08 | * |
| iris.orcid.lastModifiedDate | 2025/03/13 13:53:35 | * |
| iris.orcid.lastModifiedMillisecond | 1741870415140 | * |
| iris.scopus.extIssued | 2022 | - |
| iris.scopus.extTitle | Fuzzy OWL-Boost: Learning fuzzy concept inclusions via real-valued boosting | - |
| iris.sitodocente.maxattempts | 1 | - |
| iris.unpaywall.bestoahost | repository | * |
| iris.unpaywall.bestoaversion | submittedVersion | * |
| iris.unpaywall.doi | 10.1016/j.fss.2021.07.002 | * |
| iris.unpaywall.hosttype | repository | * |
| iris.unpaywall.isoa | true | * |
| iris.unpaywall.journalisindoaj | false | * |
| iris.unpaywall.landingpage | https://arxiv.org/abs/2008.05297 | * |
| iris.unpaywall.metadataCallLastModified | 04/05/2025 05:41:40 | - |
| iris.unpaywall.metadataCallLastModifiedMillisecond | 1746330100050 | - |
| iris.unpaywall.oastatus | green | * |
| iris.unpaywall.pdfurl | https://arxiv.org/pdf/2008.05297 | * |
| isi.authority.ancejournal | FUZZY SETS AND SYSTEMS###0165-0114 | * |
| isi.category | XY | * |
| isi.category | EX | * |
| isi.category | PN | * |
| isi.contributor.affiliation | Consiglio Nazionale delle Ricerche (CNR) | - |
| isi.contributor.affiliation | Consiglio Nazionale delle Ricerche (CNR) | - |
| isi.contributor.country | Italy | - |
| isi.contributor.country | Italy | - |
| isi.contributor.name | Franco Alberto | - |
| isi.contributor.name | Umberto | - |
| isi.contributor.researcherId | CJZ-8798-2022 | - |
| isi.contributor.researcherId | B-5373-2015 | - |
| isi.contributor.subaffiliation | Ist Linguist Computaz | - |
| isi.contributor.subaffiliation | Ist Sci & Tecnol Informaz | - |
| isi.contributor.surname | Cardillo | - |
| isi.contributor.surname | Straccia | - |
| isi.date.issued | 2022 | * |
| isi.description.abstracteng | OWL ontologies are nowadays a quite popular way to describe structured knowledge in terms of classes, relations among classes and class instances. In this paper, given an OWL ontology and a target class T, we address the problem of learning fuzzy concept inclusion axioms that describe sufficient conditions for being an individual instance of T (and to which degree). To do so, we present FUZZY OWL-BOOST that relies on the Real AdaBoost boosting algorithm adapted to the (fuzzy) OWL case. We illustrate its effectiveness by means of an experimentation with several ontologies. (c) 2021 Elsevier B.V. All rights reserved. | * |
| isi.description.allpeopleoriginal | Cardillo, FA; Straccia, U; | * |
| isi.document.sourcetype | WOS.SCI | * |
| isi.document.type | Article | * |
| isi.document.types | Article | * |
| isi.identifier.doi | 10.1016/j.fss.2021.07.002 | * |
| isi.identifier.eissn | 1872-6801 | * |
| isi.identifier.isi | WOS:000796486300009 | * |
| isi.journal.journaltitle | FUZZY SETS AND SYSTEMS | * |
| isi.journal.journaltitleabbrev | FUZZY SET SYST | * |
| isi.language.original | English | * |
| isi.publisher.place | RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS | * |
| isi.relation.firstpage | 164 | * |
| isi.relation.lastpage | 186 | * |
| isi.relation.volume | 438 | * |
| isi.title | Fuzzy OWL-Boost: Learning fuzzy concept inclusions via real-valued boosting | * |
| scopus.authority.ancejournal | FUZZY SETS AND SYSTEMS###0165-0114 | * |
| scopus.category | 2609 | * |
| scopus.category | 1702 | * |
| scopus.contributor.affiliation | CNR | - |
| scopus.contributor.affiliation | CNR | - |
| scopus.contributor.afid | 60008941 | - |
| scopus.contributor.afid | 60085207 | - |
| scopus.contributor.auid | 57191090133 | - |
| scopus.contributor.auid | 12760566600 | - |
| scopus.contributor.country | Italy | - |
| scopus.contributor.country | Italy | - |
| scopus.contributor.dptid | - | |
| scopus.contributor.dptid | - | |
| scopus.contributor.name | Franco Alberto | - |
| scopus.contributor.name | Umberto | - |
| scopus.contributor.subaffiliation | Istituto di Linguistica Computazionale; | - |
| scopus.contributor.subaffiliation | Istituto di Scienza e Tecnologie dell'Informazione; | - |
| scopus.contributor.surname | Cardillo | - |
| scopus.contributor.surname | Straccia | - |
| scopus.date.issued | 2022 | * |
| scopus.description.abstracteng | OWL ontologies are nowadays a quite popular way to describe structured knowledge in terms of classes, relations among classes and class instances. In this paper, given an OWL ontology and a target class T, we address the problem of learning fuzzy concept inclusion axioms that describe sufficient conditions for being an individual instance of T (and to which degree). To do so, we present FUZZY OWL-BOOST that relies on the Real AdaBoost boosting algorithm adapted to the (fuzzy) OWL case. We illustrate its effectiveness by means of an experimentation with several ontologies. | * |
| scopus.description.allpeopleoriginal | Cardillo F.A.; Straccia U. | * |
| scopus.differences | scopus.subject.keywords | * |
| scopus.differences | scopus.date.issued | * |
| scopus.document.type | ar | * |
| scopus.document.types | ar | * |
| scopus.funding.funders | 100010661 - Horizon 2020 Framework Programme; 100010661 - Horizon 2020 Framework Programme; 501100007601 - Horizon 2020; | * |
| scopus.funding.ids | 952215; | * |
| scopus.identifier.doi | 10.1016/j.fss.2021.07.002 | * |
| scopus.identifier.pui | 2013697005 | * |
| scopus.identifier.scopus | 2-s2.0-85111013597 | * |
| scopus.journal.sourceid | 26529 | * |
| scopus.language.iso | eng | * |
| scopus.publisher.name | Elsevier B.V. | * |
| scopus.relation.firstpage | 164 | * |
| scopus.relation.lastpage | 186 | * |
| scopus.relation.volume | 438 | * |
| scopus.subject.keywords | Concept inclusion axioms; Fuzzy logic; Machine learning; OWL 2 ontologies; Real-valued AdaBoost; | * |
| scopus.title | Fuzzy OWL-Boost: Learning fuzzy concept inclusions via real-valued boosting | * |
| scopus.titleeng | Fuzzy OWL-Boost: Learning fuzzy concept inclusions via real-valued boosting | * |
| Appare nelle tipologie: | 01.01 Articolo in rivista | |
File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_458770-doc_178526.pdf
accesso aperto
Descrizione: Preprint - Fuzzy OWL-Boost: learning fuzzy concept inclusions via real-valued boosting
Tipologia:
Documento in Pre-print
Licenza:
Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione
778.07 kB
Formato
Adobe PDF
|
778.07 kB | Adobe PDF | Visualizza/Apri |
|
prod_458770-doc_183317.pdf
non disponibili
Descrizione: Fuzzy OWL-Boost: learning fuzzy concept inclusions via real-valued boosting
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.2 MB
Formato
Adobe PDF
|
1.2 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
Straccia_Fuzzyada_AAM.pdf
accesso aperto
Descrizione: Fuzzy OWL-Boost: learning fuzzy concept inclusions via real-valued boosting
Tipologia:
Documento in Post-print
Licenza:
Nessuna licenza dichiarata (non attribuibile a prodotti successivi al 2023)
Dimensione
326.17 kB
Formato
Adobe PDF
|
326.17 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


