We demonstrate the self-propulsion of a volatile drop on the surface of a bath of an immiscible liquid. Evaporative heat pumping is converted into directed motion through thermocapillary stresses, which arise from the coupling between surface-tension-driven flows and temperature advection. A propulsive force arises from convection-sustained temperature gradients along the drop interface, resulting in a warmer pool of liquid being advected by the hydrodynamic flow in the underlying bath toward the back of the drop. The dependence of the drop speed on the activity source, i.e., the evaporation flux, is derived with scaling arguments and captures the experimental data.
Self-Propulsion of a Volatile Drop on the Surface of an Immiscible Liquid Bath
Giuseppe Pucci
2021
Abstract
We demonstrate the self-propulsion of a volatile drop on the surface of a bath of an immiscible liquid. Evaporative heat pumping is converted into directed motion through thermocapillary stresses, which arise from the coupling between surface-tension-driven flows and temperature advection. A propulsive force arises from convection-sustained temperature gradients along the drop interface, resulting in a warmer pool of liquid being advected by the hydrodynamic flow in the underlying bath toward the back of the drop. The dependence of the drop speed on the activity source, i.e., the evaporation flux, is derived with scaling arguments and captures the experimental data.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.