The nanoincorporation of the extract of Citrus limon (L.) Osbeck var. pompia into liposomes was aimed at improving its antioxidant and antibacterial effects. Methods: The extract of the rind of Citrus limon (L.) Osbeck var. pompia was obtained by maceration in ethanol, evaporation, and freeze-drying. The extract phytochemical fingerprint was obtained by HPLC and mass spectrometry, and it was determined that gallic acid, neohesperidin, eriocitrin, and neoeriocitrin were the most abundant components. The freeze-dried extract was loaded in liposomes, glycerosomes, and penetration-enhancer-containing vesicles prepared with propylene glycol (PG-PEVs). Results: Capability of the vesicles of improving efficacy of the extract in counteracting oxidative stress was studied in vitro in keratinocytes, along with antimicrobial activity against planktonic cultures of Streptococcus mutans, Lactobacillus acidophilus, and Streptococcus sanguinis. Conclusion: Results showed that the vesicles, especially glycerosomes and PG-PEVs, prevented oxidative damage and cell death, and inhibited bacterial proliferation.
Citrus limon extracts loaded in vesicular systems for the protection of oral cavity
D'hallewin G;
2018
Abstract
The nanoincorporation of the extract of Citrus limon (L.) Osbeck var. pompia into liposomes was aimed at improving its antioxidant and antibacterial effects. Methods: The extract of the rind of Citrus limon (L.) Osbeck var. pompia was obtained by maceration in ethanol, evaporation, and freeze-drying. The extract phytochemical fingerprint was obtained by HPLC and mass spectrometry, and it was determined that gallic acid, neohesperidin, eriocitrin, and neoeriocitrin were the most abundant components. The freeze-dried extract was loaded in liposomes, glycerosomes, and penetration-enhancer-containing vesicles prepared with propylene glycol (PG-PEVs). Results: Capability of the vesicles of improving efficacy of the extract in counteracting oxidative stress was studied in vitro in keratinocytes, along with antimicrobial activity against planktonic cultures of Streptococcus mutans, Lactobacillus acidophilus, and Streptococcus sanguinis. Conclusion: Results showed that the vesicles, especially glycerosomes and PG-PEVs, prevented oxidative damage and cell death, and inhibited bacterial proliferation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.