A plethora of neuroimaging studies have focused on the discovery of potential neuroendophenotypes useful to understand the etiopathogenesis of autism and predict treatment response. Social robotics has recently been proposed as an effective tool to strengthen the current treatments in children with autism. However, the high clinical heterogeneity characterizing this disorder might interfere with behavioral effects. Neuroimaging is set to overcome these limitations by capturing the level of heterogeneity. Here, we provide a preliminary evaluation of the neural basis of social robotics and how extracting neural hallmarks useful to design more effective behavioral applications. Despite the endophenotype-oriented neuroimaging research approach is in its relative infancy, this preliminary evidence encourages innovation to address its current limitations.
Neuroimaging endophenotypes of social robotic applications in autism spectrum disorder
Cerasa A;Ruta L;Marino F;Biamonti G;Pioggia G
2020
Abstract
A plethora of neuroimaging studies have focused on the discovery of potential neuroendophenotypes useful to understand the etiopathogenesis of autism and predict treatment response. Social robotics has recently been proposed as an effective tool to strengthen the current treatments in children with autism. However, the high clinical heterogeneity characterizing this disorder might interfere with behavioral effects. Neuroimaging is set to overcome these limitations by capturing the level of heterogeneity. Here, we provide a preliminary evaluation of the neural basis of social robotics and how extracting neural hallmarks useful to design more effective behavioral applications. Despite the endophenotype-oriented neuroimaging research approach is in its relative infancy, this preliminary evidence encourages innovation to address its current limitations.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.