The excellent physical and chemical properties and the radiation hardness of silicon carbide (SiC) render this material particularly suitable for the realization of radiation detectors. In this paper we describe the main properties of SiC and the processes needed to realize good performance detectors. To this purpose, we made SiC Schottky diodes that were electrical characterized by using different techniques. In order to test the radiation hardness, the diodes were irradiated with different ion beams and the analysis of the electrical measurements allowed to identify the defects responsible of the device degradation. These detectors have been used to monitor the multi-MeV ions of the plasma emitted by irradiation of various targets with 300-ps laser at high intensity (10(16)W/cm(2)). These measurements highlighted that the use of SiC detectors enhances the sensitivity to ions detection due to the cutting of the visible and soft ultraviolet radiation emitted from plasma. The small rise time and the proportionality to ion energy evidence that these detectors are a powerful tool for the characterization of ion generated by high-intensity pulsed laser.

Laser plasma monitored by silicon carbide detectors

Zimbone M;
2015

Abstract

The excellent physical and chemical properties and the radiation hardness of silicon carbide (SiC) render this material particularly suitable for the realization of radiation detectors. In this paper we describe the main properties of SiC and the processes needed to realize good performance detectors. To this purpose, we made SiC Schottky diodes that were electrical characterized by using different techniques. In order to test the radiation hardness, the diodes were irradiated with different ion beams and the analysis of the electrical measurements allowed to identify the defects responsible of the device degradation. These detectors have been used to monitor the multi-MeV ions of the plasma emitted by irradiation of various targets with 300-ps laser at high intensity (10(16)W/cm(2)). These measurements highlighted that the use of SiC detectors enhances the sensitivity to ions detection due to the cutting of the visible and soft ultraviolet radiation emitted from plasma. The small rise time and the proportionality to ion energy evidence that these detectors are a powerful tool for the characterization of ion generated by high-intensity pulsed laser.
2015
silicon carbide
Schottky diodes
high energy ions
plasma diagnostic
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/404975
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact