Developing successful tokamak operation scenarios, as well as confident extrapolation of present-day knowledge requires a rigorous understanding of plasma turbulence, which largely determines the quality of the confinement. In particular, accurate particle transport predictions are essential due to the strong dependence of fusion power or bootstrap current on the particle density details. Here, gyrokinetic turbulence simulations are performed with physics inputs taken from a JET power scan, for which a relatively weak degradation of energy confinement and a significant density peaking is obtained with increasing input power. This way physics parameters that lead to such increase in the density peaking shall be elucidated. While well-known candidates, such as the collisionality, previously found in other studies are also recovered in this study, it is furthermore found that edge E x B shearing may adopt a crucial role by enhancing the inward pinch. These results may indicate that a plasma with rotational shear could develop a stronger density peaking as compared to a non-rotating one, because its inward convection is increased compared to the outward diffusive particle flux as long as this rotation has a significant on E x B flow shear stabilization. The possibly significant implications for future devices, which will exhibit much less torque compared to present day experiments, are discussed.

A new mechanism for increasing density peaking in tokamaks: improvement of the inward particle pinch with edge E x B shearing

Alessi E;Bonfiglio D;Brombin M;Brunetti D;Carraro L;Causa F;Figini L;Gervasini G;Ghezzi F;Innocente P;Laguardia L;Lazzaro E;Manduchi G;Marchetto C;Mariani A;Murari A;Muraro A;Nowak S;Paccagnella R;Pasqualotto R;Pomaro N;Predebon I;Puiatti M E;Rebai M;Ricci D;Rigamonti D;Schmuck S;Sozzi C;Tardocchi M;Terranova D;Uccello A;Vianello N;
2019

Abstract

Developing successful tokamak operation scenarios, as well as confident extrapolation of present-day knowledge requires a rigorous understanding of plasma turbulence, which largely determines the quality of the confinement. In particular, accurate particle transport predictions are essential due to the strong dependence of fusion power or bootstrap current on the particle density details. Here, gyrokinetic turbulence simulations are performed with physics inputs taken from a JET power scan, for which a relatively weak degradation of energy confinement and a significant density peaking is obtained with increasing input power. This way physics parameters that lead to such increase in the density peaking shall be elucidated. While well-known candidates, such as the collisionality, previously found in other studies are also recovered in this study, it is furthermore found that edge E x B shearing may adopt a crucial role by enhancing the inward pinch. These results may indicate that a plasma with rotational shear could develop a stronger density peaking as compared to a non-rotating one, because its inward convection is increased compared to the outward diffusive particle flux as long as this rotation has a significant on E x B flow shear stabilization. The possibly significant implications for future devices, which will exhibit much less torque compared to present day experiments, are discussed.
2019
Istituto di fisica del plasma - IFP - Sede Milano
Istituto gas ionizzati - IGI - Sede Padova
Istituto dei Sistemi Complessi - ISC
Istituto per la Scienza e Tecnologia dei Plasmi - ISTP
turbulence
transport
plasma
File in questo prodotto:
File Dimensione Formato  
prod_430394-doc_153730.pdf

solo utenti autorizzati

Descrizione: A new mechanism for increasing density peakingin tokamaks
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/405236
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact