Finding the source of an odor dispersed by a turbulent flow is a vital task for many organisms. When many individuals concurrently perform the same olfactory search task, sharing information about other members' decisions can potentially boost the performance. But how much of this information is actually exploitable for the collective task? Here we show, in a model of a swarm of agents inspired by moth behavior, that there is an optimal way to blend the private information about odor and wind detections with the public information about other agents' heading direction. Our results suggest an efficient multiagent olfactory search algorithm that could prove useful in robotics, e.g., in the identification of sources of harmful volatile compounds.
Collective olfactory search in a turbulent environment
Cencini M.;
2020
Abstract
Finding the source of an odor dispersed by a turbulent flow is a vital task for many organisms. When many individuals concurrently perform the same olfactory search task, sharing information about other members' decisions can potentially boost the performance. But how much of this information is actually exploitable for the collective task? Here we show, in a model of a swarm of agents inspired by moth behavior, that there is an optimal way to blend the private information about odor and wind detections with the public information about other agents' heading direction. Our results suggest an efficient multiagent olfactory search algorithm that could prove useful in robotics, e.g., in the identification of sources of harmful volatile compounds.File | Dimensione | Formato | |
---|---|---|---|
prod_429413-doc_162167.pdf
accesso aperto
Descrizione: Collective olfactory search in a turbulent environment
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.34 MB
Formato
Adobe PDF
|
1.34 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.