Unmanned aerial vehicles (UAVs) are becoming increasingly accessible tools with widespread use as environmental monitoring systems. They can be used for anthropogenic marine debris survey, a recently growing research field. In fact, while the increasing efforts for offshore investigations lead to a considerable collection of data on this type of pollution in the open sea, there is still little knowledge of the materials deposited along the coasts and the mechanism that leads to their accumulation pattern. UAVs can be effective in bridging this gap by increasing the amount of data acquired to study coastal deposits, while also limiting the anthropogenic impact in protected areas. In this study, UAVs have been used to acquire geo-referenced RGB images in a selected zone of a protected marine area (the Migliarino, Massacciuccoli, and San Rossore park near Pisa, Italy), during a long-term (ten months) monitoring programme. A post processing system based on visual interpretation of the images allows the localization and identification of the anthropogenic marine debris within the scanned area, and the estimation of their spatial and temporal distribution in different zones of the beach. These results provide an opportunity to investigate the dynamics of accumulation over time, suggesting that our approach might be appropriate for monitoring and collecting such data in isolated, and especially in protected, areas with significant benefits for different types of stakeholders.

Unmanned aerial vehicles for debris survey in coastal areas: Long-term monitoring programme to study spatial and temporal accumulation of the dynamics of beached marine litter

Merlino Silvia
;
Paterni Marco;Berton Andrea;Massetti Luciano
2020

Abstract

Unmanned aerial vehicles (UAVs) are becoming increasingly accessible tools with widespread use as environmental monitoring systems. They can be used for anthropogenic marine debris survey, a recently growing research field. In fact, while the increasing efforts for offshore investigations lead to a considerable collection of data on this type of pollution in the open sea, there is still little knowledge of the materials deposited along the coasts and the mechanism that leads to their accumulation pattern. UAVs can be effective in bridging this gap by increasing the amount of data acquired to study coastal deposits, while also limiting the anthropogenic impact in protected areas. In this study, UAVs have been used to acquire geo-referenced RGB images in a selected zone of a protected marine area (the Migliarino, Massacciuccoli, and San Rossore park near Pisa, Italy), during a long-term (ten months) monitoring programme. A post processing system based on visual interpretation of the images allows the localization and identification of the anthropogenic marine debris within the scanned area, and the estimation of their spatial and temporal distribution in different zones of the beach. These results provide an opportunity to investigate the dynamics of accumulation over time, suggesting that our approach might be appropriate for monitoring and collecting such data in isolated, and especially in protected, areas with significant benefits for different types of stakeholders.
2020
Istituto per la BioEconomia - IBE
Istituto di Scienze Marine - ISMAR - Sede Secondaria Lerici
Istituto di Fisiologia Clinica - IFC
unmanned-aerial-vehicles
UAVs
anthropogenic-marine-debris
AMD
beached-marine-litter
BML
marine-protected-areas
MPA
ortho-photo
marine-pollution
accumulation-rate
File in questo prodotto:
File Dimensione Formato  
prod_429456-doc_153308.pdf

accesso aperto

Descrizione: Unmanned Aerial Vehicles for Debris Survey in Coastal Areas:
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 5.41 MB
Formato Adobe PDF
5.41 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/405449
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 63
  • ???jsp.display-item.citation.isi??? ND
social impact