Tropospheric ozone (O-3) is probably the air pollutant most damaging to vegetation. Understanding how plants respond to O(3)pollution under different climate conditions is of central importance for predicting the interactions between climate change, ozone impact and vegetation. This work analyses the effect of O(3)fluxes on net ecosystem productivity (NEP), measured directly at the ecosystem level with the eddy covariance (EC) technique. The relationship was explored with artificial neural networks (ANNs), which were used to model NEP using environmental and phenological variables as inputs in addition to stomatal O(3)uptake in Spring and Summer, when O(3)pollution is expected to be highest. A sensitivity analysis allowed us to isolate the effect of O-3, visualize the shape of the O-3-NEP functional relationship and explore how climatic variables affect NEP response to O-3. This approach has been applied to eleven ecosystems covering a range of climatic areas. The analysis highlighted that O(3)effects over NEP are highly non-linear and site-specific. A significant but small NEP reduction was found during Spring in a Scottish shrubland (-0.67%), in two Italian forests (up to -1.37%) and during Summer in a Californian orange orchard (-1.25%). Although the overall seasonal effect of O(3)on NEP was not found to be negative for the other sites, with episodic O(3)detrimental effect still identified. These episodes were correlated with meteorological variables showing that O(3)damage depends on weather conditions. By identifying O(3)damage under field conditions and the environmental factors influencing to that damage, this work provides an insight into O(3)pollution, climate and weather conditions.

Neural Network Analysis to Evaluate Ozone Damage to Vegetation Under Different Climatic Conditions

Zenone Terenzio;Fares Silvano
2020

Abstract

Tropospheric ozone (O-3) is probably the air pollutant most damaging to vegetation. Understanding how plants respond to O(3)pollution under different climate conditions is of central importance for predicting the interactions between climate change, ozone impact and vegetation. This work analyses the effect of O(3)fluxes on net ecosystem productivity (NEP), measured directly at the ecosystem level with the eddy covariance (EC) technique. The relationship was explored with artificial neural networks (ANNs), which were used to model NEP using environmental and phenological variables as inputs in addition to stomatal O(3)uptake in Spring and Summer, when O(3)pollution is expected to be highest. A sensitivity analysis allowed us to isolate the effect of O-3, visualize the shape of the O-3-NEP functional relationship and explore how climatic variables affect NEP response to O-3. This approach has been applied to eleven ecosystems covering a range of climatic areas. The analysis highlighted that O(3)effects over NEP are highly non-linear and site-specific. A significant but small NEP reduction was found during Spring in a Scottish shrubland (-0.67%), in two Italian forests (up to -1.37%) and during Summer in a Californian orange orchard (-1.25%). Although the overall seasonal effect of O(3)on NEP was not found to be negative for the other sites, with episodic O(3)detrimental effect still identified. These episodes were correlated with meteorological variables showing that O(3)damage depends on weather conditions. By identifying O(3)damage under field conditions and the environmental factors influencing to that damage, this work provides an insight into O(3)pollution, climate and weather conditions.
2020
Istituto per la BioEconomia - IBE
net ecosystem exchange
european forest
stomatal deposition
tropospheric ozone
artificial neural networks
climate change
File in questo prodotto:
File Dimensione Formato  
prod_428800-doc_153072.pdf

accesso aperto

Descrizione: Neural Network Analysis to Evaluate Ozone Damage to Vegetation Under Different Climatic Conditions
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/405636
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact