In this paper we present new efficient variants of substructuring preconditioners for algebraic linear systems arising from the mortar discretization of a degenerate parabolic system of equations. The new approaches extend and adapt the idea of substructuring pre- conditioners to the discretization of a degenerate problem in electrocardiology. A polyloga- rithmic bound for the condition number of the preconditioned matrix is proved and validated by numerical experiments.
Substructuring preconditioners for mortar discretization of a degenerate evolution problem
M Pennacchio;V Simoncini
2008
Abstract
In this paper we present new efficient variants of substructuring preconditioners for algebraic linear systems arising from the mortar discretization of a degenerate parabolic system of equations. The new approaches extend and adapt the idea of substructuring pre- conditioners to the discretization of a degenerate problem in electrocardiology. A polyloga- rithmic bound for the condition number of the preconditioned matrix is proved and validated by numerical experiments.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
prod_31340-doc_5351.pdf
solo utenti autorizzati
Descrizione: Articolo pubblicato su rivista
Dimensione
1.28 MB
Formato
Adobe PDF
|
1.28 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.