In this paper we present new efficient variants of substructuring preconditioners for algebraic linear systems arising from the mortar discretization of a degenerate parabolic system of equations. The new approaches extend and adapt the idea of substructuring pre- conditioners to the discretization of a degenerate problem in electrocardiology. A polyloga- rithmic bound for the condition number of the preconditioned matrix is proved and validated by numerical experiments.

Substructuring preconditioners for mortar discretization of a degenerate evolution problem

M Pennacchio;V Simoncini
2008

Abstract

In this paper we present new efficient variants of substructuring preconditioners for algebraic linear systems arising from the mortar discretization of a degenerate parabolic system of equations. The new approaches extend and adapt the idea of substructuring pre- conditioners to the discretization of a degenerate problem in electrocardiology. A polyloga- rithmic bound for the condition number of the preconditioned matrix is proved and validated by numerical experiments.
2008
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Domain decomposition
Iterative substructuring
Mortar method
Degenerate evolution equations
File in questo prodotto:
File Dimensione Formato  
prod_31340-doc_5351.pdf

solo utenti autorizzati

Descrizione: Articolo pubblicato su rivista
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/40644
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 6
social impact