The so-called bidomain system is possibly the most complete model for the cardiac bioelectric activity. It consists of a reaction-diffusion system, modeling the intra, extracellular and transmembrane potentials, coupled through a nonlinear reaction term with a stiff system of ordinary differential equations describing the ionic currents through the cellular membrane. In this paper we address the problem of efficiently solving the large linear system arising in the finite element discretization of the bidomain model, when a semiimplicit method in time is employed. We analyze the use of structured algebraic multigrid preconditioners on two major formulations of the model, and report on our numerical experience under different discretization parameters and various discontinuity properties of the conductivity tensors. Our numerical results show that the less exercised formulation provides the best overall performance on a typical simulation of the myocardium excitation process.

Algebraic multigrid preconditioners for the bidomain reaction-diffusion system

M Pennacchio;V Simoncini
2009

Abstract

The so-called bidomain system is possibly the most complete model for the cardiac bioelectric activity. It consists of a reaction-diffusion system, modeling the intra, extracellular and transmembrane potentials, coupled through a nonlinear reaction term with a stiff system of ordinary differential equations describing the ionic currents through the cellular membrane. In this paper we address the problem of efficiently solving the large linear system arising in the finite element discretization of the bidomain model, when a semiimplicit method in time is employed. We analyze the use of structured algebraic multigrid preconditioners on two major formulations of the model, and report on our numerical experience under different discretization parameters and various discontinuity properties of the conductivity tensors. Our numerical results show that the less exercised formulation provides the best overall performance on a typical simulation of the myocardium excitation process.
2009
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Reaction-diffusion system; Iterative methods; Algebraic multigrid; Preconditioning
File in questo prodotto:
File Dimensione Formato  
prod_31485-doc_4802.pdf

solo utenti autorizzati

Descrizione: Algebraic multigrid preconditioners for the bidomain reaction-diffusion system
Dimensione 772.22 kB
Formato Adobe PDF
772.22 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/40769
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 39
social impact