The experimental activities carried out in this study aimed at designing a lentil-based beverage rich in soluble and digestible proteins. In order to extract soluble proteins, lentil grains were soaked in water overnight, blended, treated with proteolytic enzymes and fermented with Lactobacillus strains. Protein enzymatic hydrolysis, carried out with four commercial food grade enzyme preparations, showed that bromelin, at the enzyme to substrate ratio of 10%, was the best solution to produce this novel beverage. Even though the seven Lactobacillus strains were all able to ferment aqueous extract within 24 h, L. acidophilus ATCC 4356, L. fermentum DSM 20052 and L. paracasei subsp. paracasei DSM 20312 showed the highest growth rate and the lowest pH values. In fermented lentil-based beverages, the antinutritional factor phytic acid decreased up to 30%, similarly, the highest reduction in ranose oligosaccharides content reached about 12% the initial concentration. It is worthy of note that the viable density of all strains remained higher than 7 log cfu/mL after 28 days of cold storage. The results here reported show for the first time the possibility to obtain a probiotic lentil-based beverage rich in soluble proteins, peptides and amino acids with low content in main antinutritional factors.

Design and Characterization of a Novel Fermented Beverage from Lentil Grains

Demarinis C;Baruzzi;
2020

Abstract

The experimental activities carried out in this study aimed at designing a lentil-based beverage rich in soluble and digestible proteins. In order to extract soluble proteins, lentil grains were soaked in water overnight, blended, treated with proteolytic enzymes and fermented with Lactobacillus strains. Protein enzymatic hydrolysis, carried out with four commercial food grade enzyme preparations, showed that bromelin, at the enzyme to substrate ratio of 10%, was the best solution to produce this novel beverage. Even though the seven Lactobacillus strains were all able to ferment aqueous extract within 24 h, L. acidophilus ATCC 4356, L. fermentum DSM 20052 and L. paracasei subsp. paracasei DSM 20312 showed the highest growth rate and the lowest pH values. In fermented lentil-based beverages, the antinutritional factor phytic acid decreased up to 30%, similarly, the highest reduction in ranose oligosaccharides content reached about 12% the initial concentration. It is worthy of note that the viable density of all strains remained higher than 7 log cfu/mL after 28 days of cold storage. The results here reported show for the first time the possibility to obtain a probiotic lentil-based beverage rich in soluble proteins, peptides and amino acids with low content in main antinutritional factors.
2020
Istituto di Scienze delle Produzioni Alimentari - ISPA
plant-based milk substitutes
probiotic lactic acid bacteria
legume grain aqueous extracts
antinutritional factors
antinutritional factors
soluble proteins
File in questo prodotto:
File Dimensione Formato  
prod_425294-doc_151706.pdf

accesso aperto

Descrizione: Design and Characterization of a Novel Fermented Beverage from Lentil Grains
Tipologia: Versione Editoriale (PDF)
Dimensione 739.17 kB
Formato Adobe PDF
739.17 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/408659
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact