Reduced neo-adipogenesis and dysfunctional lipid-overloaded adipocytes are hallmarks of hypertrophic obesity linked to insulin resistance. Identifying molecular features of hypertrophic adipocytes requires appropriate in vitro models. We describe the generation of a model of human hypertrophic-like adipocytes directly comparable to normal adipose cells and the pathologic evolution toward hypertrophic state. We generate in vitro hypertrophic cells from mature adipocytes, differentiated from human mesenchymal stem cells. Combining optical, confocal, and transmission electron microscopy with mRNA/protein quantification, we characterize this cellular model, confirming specific alterations also in subcutaneous adipose tissue. Specifically, we report the generation and morphological/molecular characterization of human normal and hypertrophic-like adipocytes. The latter displays altered morphology and unbalance between canonical and dominant negative (PPARG Delta 5) transcripts of PPARG, paralleled by reduced expression of PPAR gamma targets, including GLUT4. Furthermore, the unbalance of PPAR gamma isoforms associates with GLUT4 down-regulation in subcutaneous adipose tissue of individuals with overweight/obesity or impaired glucose tolerance/type 2 diabetes, but not with normal weight or glucose tolerance. In conclusion, the hypertrophic-like cells described herein are an innovative tool for studying molecular dysfunctions in hypertrophic obesity and the unbalance between PPAR gamma isoforms associates with down-regulation of GLUT4 and other PPAR gamma targets, representing a new hallmark of hypertrophic adipocytes.

In Vitro-Generated Hypertrophic-Like Adipocytes Displaying PPARG Isoforms Unbalance Recapitulate Adipocyte Dysfunctions In Vivo

Aprile Marianna
;
Cataldi Simona;Perfetto Caterina;Ambrosio Maria Rosaria;Italiani Paola;Ciccodicola Alfredo;Costa Valerio
2020

Abstract

Reduced neo-adipogenesis and dysfunctional lipid-overloaded adipocytes are hallmarks of hypertrophic obesity linked to insulin resistance. Identifying molecular features of hypertrophic adipocytes requires appropriate in vitro models. We describe the generation of a model of human hypertrophic-like adipocytes directly comparable to normal adipose cells and the pathologic evolution toward hypertrophic state. We generate in vitro hypertrophic cells from mature adipocytes, differentiated from human mesenchymal stem cells. Combining optical, confocal, and transmission electron microscopy with mRNA/protein quantification, we characterize this cellular model, confirming specific alterations also in subcutaneous adipose tissue. Specifically, we report the generation and morphological/molecular characterization of human normal and hypertrophic-like adipocytes. The latter displays altered morphology and unbalance between canonical and dominant negative (PPARG Delta 5) transcripts of PPARG, paralleled by reduced expression of PPAR gamma targets, including GLUT4. Furthermore, the unbalance of PPAR gamma isoforms associates with GLUT4 down-regulation in subcutaneous adipose tissue of individuals with overweight/obesity or impaired glucose tolerance/type 2 diabetes, but not with normal weight or glucose tolerance. In conclusion, the hypertrophic-like cells described herein are an innovative tool for studying molecular dysfunctions in hypertrophic obesity and the unbalance between PPAR gamma isoforms associates with down-regulation of GLUT4 and other PPAR gamma targets, representing a new hallmark of hypertrophic adipocytes.
2020
Istituto di Endocrinologia e Oncologia Sperimentale ''G. Salvatore'' - IEOS
Istituto di genetica e biofisica "Adriano Buzzati Traverso"- IGB - Sede Napoli
Istituto di Biochimica e Biologia Cellulare - IBBC
hypertrophic adipocytes
PPARG isoforms
PPARG splicing
dominant-negative isoform
in vitro adipocytes
adipogenesis
hypertrophic obesity
insulin-resistance
File in questo prodotto:
File Dimensione Formato  
prod_426579-doc_156374.pdf

accesso aperto

Descrizione: In Vitro-Generated Hypertrophic-Like ...
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 19.8 MB
Formato Adobe PDF
19.8 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/410000
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact