Two-dimensional materials with high charge carrier mobility and tunable band gaps have attracted intense research effort for their potential use in nanoelectronics. Two-dimensional π-conjugated polymers constitute a promising subclass because the band structure can be manipulated by varying the molecular building blocks while preserving key features such as Dirac cones and high charge mobility. The major barriers to the application of two-dimensional π-conjugated polymers have been the small domain size and high defect density attained in the syntheses explored so far. Here, we demonstrate the fabrication of mesoscale ordered two-dimensional π-conjugated polymer kagome lattices with semiconducting properties, Dirac cone structures and flat bands on Au(111). This material has been obtained by combining a rigid azatriangulene precursor and a hot dosing approach, which favours molecular diffusion and eliminates voids in the network. These results open opportunities for the synthesis of two-dimensional π-conjugated polymer Dirac cone materials and their integration into devices.
Synthesis of mesoscale ordered two-dimensional π-conjugated polymers with semiconducting properties
Galeotti, G.;Ferrari, L.;Frezza, F.;Sheverdyaeva, P. M.;Moras, P.;Contini, G.
2020
Abstract
Two-dimensional materials with high charge carrier mobility and tunable band gaps have attracted intense research effort for their potential use in nanoelectronics. Two-dimensional π-conjugated polymers constitute a promising subclass because the band structure can be manipulated by varying the molecular building blocks while preserving key features such as Dirac cones and high charge mobility. The major barriers to the application of two-dimensional π-conjugated polymers have been the small domain size and high defect density attained in the syntheses explored so far. Here, we demonstrate the fabrication of mesoscale ordered two-dimensional π-conjugated polymer kagome lattices with semiconducting properties, Dirac cone structures and flat bands on Au(111). This material has been obtained by combining a rigid azatriangulene precursor and a hot dosing approach, which favours molecular diffusion and eliminates voids in the network. These results open opportunities for the synthesis of two-dimensional π-conjugated polymer Dirac cone materials and their integration into devices.| File | Dimensione | Formato | |
|---|---|---|---|
|
s41563-020-0682-z.pdf
solo utenti autorizzati
Descrizione: Articolo pubblicato online
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.78 MB
Formato
Adobe PDF
|
2.78 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
2020_Contini_arxiv_doi.pdf
accesso aperto
Descrizione: file da arxiv compreso di DOI di versione pubblicata
Tipologia:
Documento in Pre-print
Licenza:
Altro tipo di licenza
Dimensione
896.45 kB
Formato
Adobe PDF
|
896.45 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


