Elderly people fall detection is a very relevant and widely studied problem. It is associated with the need to detect fall events using pervasive and largely accepted technologies and the need to suddenly manage the first aid phase after a fall occurs. This research work aims to provide a non-invasive fall detection system, widely accepted by users, limiting data exchange only to the first aid request and help phase in order to reduce privacy issues. This paper proposes a fall detection methodology and a mobile application built on sensors available on smartphones, such as accelerometer, gyroscope, proximity sensor, microphone and GPS. The proposed fall detection method combines data from the five sensors using a threshold-based algorithm; the data processing allows fall detection and enables a first aid request sending a message to rescuers

Multi-Sensor Fall Detection for Smartphones

Noemi Biancone;Chiara Bicchielli;Fernando Ferri;Patrizia Grifoni
2021

Abstract

Elderly people fall detection is a very relevant and widely studied problem. It is associated with the need to detect fall events using pervasive and largely accepted technologies and the need to suddenly manage the first aid phase after a fall occurs. This research work aims to provide a non-invasive fall detection system, widely accepted by users, limiting data exchange only to the first aid request and help phase in order to reduce privacy issues. This paper proposes a fall detection methodology and a mobile application built on sensors available on smartphones, such as accelerometer, gyroscope, proximity sensor, microphone and GPS. The proposed fall detection method combines data from the five sensors using a threshold-based algorithm; the data processing allows fall detection and enables a first aid request sending a message to rescuers
2021
Istituto di Ricerche sulla Popolazione e le Politiche Sociali - IRPPS
Fall Detection
Smartphone
File in questo prodotto:
File Dimensione Formato  
prod_449931-doc_162703.pdf

accesso aperto

Descrizione: Multi-Sensor Fall Detection for Smartphones
Tipologia: Versione Editoriale (PDF)
Dimensione 981.53 kB
Formato Adobe PDF
981.53 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/411599
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact