An important drawback in the management of glioblastoma (GBM) patients is the frequent relapse upon surgery and therapy. A likely explanation is that conventional therapies poorly affect a small population of stem-like cancer cells (glioblastoma stem cells, GSCs) that remain capable of repopulating the tumour mass. Indeed, the development of therapeutic strategies able to hit GSCs while reducing the tumour burden has become an important challenge to increase a patient's survival. The signal transducer and activator of transcription-3 (STAT3) has been reported to play a pivotal role in maintaining the tumour initiating capacity of the GSC population. Therefore, in order to impair the renewal and propagation of the PDGFR?-expressing GSC population, here we took advantage of the aptamer-siRNA chimera (AsiC), named Gint4.T-STAT3, that we previously have shown to efficiently antagonize STAT3 in subcutaneous PDGFR?-positive GBM xenografts. We demonstrate that the aptamer conjugate is able to effectively and specifically prevent patient-derived GSC function and expansion. Moreover, because of the therapeutic potential of using miR-10b inhibitors and of the broad expression of the Axl receptor in GBM, we used the GL21.T anti-Axl aptamer as the targeting moiety for anti-miR-10b, showing that, in combination with the STAT3 AsiC, the aptamer-miR-10b antagonist treatment further enhances the inhibition of GSC sphere formation. Our results highlight the potential to use a combined approach with targeted RNA therapeutics to inhibit GBM tumour dissemination and relapse.

Combined targeting of glioblastoma stem-like cells by neutralizing RNA-bio-drugs for STAT3

Esposito CL;Nuzzo S;Condorelli G;Catuogno S;de Franciscis V
2020

Abstract

An important drawback in the management of glioblastoma (GBM) patients is the frequent relapse upon surgery and therapy. A likely explanation is that conventional therapies poorly affect a small population of stem-like cancer cells (glioblastoma stem cells, GSCs) that remain capable of repopulating the tumour mass. Indeed, the development of therapeutic strategies able to hit GSCs while reducing the tumour burden has become an important challenge to increase a patient's survival. The signal transducer and activator of transcription-3 (STAT3) has been reported to play a pivotal role in maintaining the tumour initiating capacity of the GSC population. Therefore, in order to impair the renewal and propagation of the PDGFR?-expressing GSC population, here we took advantage of the aptamer-siRNA chimera (AsiC), named Gint4.T-STAT3, that we previously have shown to efficiently antagonize STAT3 in subcutaneous PDGFR?-positive GBM xenografts. We demonstrate that the aptamer conjugate is able to effectively and specifically prevent patient-derived GSC function and expansion. Moreover, because of the therapeutic potential of using miR-10b inhibitors and of the broad expression of the Axl receptor in GBM, we used the GL21.T anti-Axl aptamer as the targeting moiety for anti-miR-10b, showing that, in combination with the STAT3 AsiC, the aptamer-miR-10b antagonist treatment further enhances the inhibition of GSC sphere formation. Our results highlight the potential to use a combined approach with targeted RNA therapeutics to inhibit GBM tumour dissemination and relapse.
2020
Istituto di Endocrinologia e Oncologia Sperimentale ''G. Salvatore'' - IEOS
STAT3; aptamer; cancer stem cells; glioblastoma; targeted delivery.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/411923
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
social impact