In this work, we present the first systematic identification of episodes of air mass transport from the lower stratosphere/upper troposphere (LS/UT) in the middle troposphere of the southern Himalayas. For this purpose, we developed an algorithm to detect LS/UT transport events on a daily basis at the Everest-Pyramid GAW station (EV-PYR, 5079 m a.s.l., Nepal). In particular, in situ surface ozone and atmospheric pressure variations as well as total ozone values from OMI satellite measurements have been analysed. Further insight is gained from three-dimensional backward trajectories and potential vorticity calculated with the LAGRANTO model. According to the algorithm outputs, 9.0% of the considered data set (365 days from March 2006 to February 2007) was influenced by this class of phenomena with a maximum of frequency during dry and pre-monsoon seasons. During 25 days of LS/UT transport events for which any influence of anthropogenic pollution was excluded, the daily ozone mixing ratio increased by 9.3% compared to the seasonal values. This indicates that under favourable conditions, downward air mass transport from the LS/UT can play a considerable role in determining the concentrations of surface ozone in the southern Himalayas.

Influence of lower stratosphere/upper troposphere transport events on surface ozone at the Everest-Pyramid GAW Station (Nepal): first year of analysis

P Cristofanelli;P Bonasoni;U Bonafe';A Marinoni;F Roccato;
2009

Abstract

In this work, we present the first systematic identification of episodes of air mass transport from the lower stratosphere/upper troposphere (LS/UT) in the middle troposphere of the southern Himalayas. For this purpose, we developed an algorithm to detect LS/UT transport events on a daily basis at the Everest-Pyramid GAW station (EV-PYR, 5079 m a.s.l., Nepal). In particular, in situ surface ozone and atmospheric pressure variations as well as total ozone values from OMI satellite measurements have been analysed. Further insight is gained from three-dimensional backward trajectories and potential vorticity calculated with the LAGRANTO model. According to the algorithm outputs, 9.0% of the considered data set (365 days from March 2006 to February 2007) was influenced by this class of phenomena with a maximum of frequency during dry and pre-monsoon seasons. During 25 days of LS/UT transport events for which any influence of anthropogenic pollution was excluded, the daily ozone mixing ratio increased by 9.3% compared to the seasonal values. This indicates that under favourable conditions, downward air mass transport from the LS/UT can play a considerable role in determining the concentrations of surface ozone in the southern Himalayas.
2009
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/41238
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact