The theory of adiabatic electron transport in a correlated condensed-matter system is rooted in a seminal paper by Niu and Thouless [J. Phys. A: Math. Gen. 17, 2453 (1984)]; I adopt here an analogous logic in order to retrieve the known expression for the adiabatic electronic flux in a molecular system [L. A. Nafie, J. Chem. Phys. 79, 4950 (1983)]. Its derivation here is considerably simpler than those available in the current quantum-chemistry literature; it also explicitly identifies the adiabaticity parameter, in terms of which the adiabatic flux and the electron density are both exact to first order. It is shown that the continuity equation is conserved to the same order. For the sake of completeness, I also briefly outline the relevance of the macroscopic electronic flux to the physics of solids and liquids.
Adiabatic electronic flux in molecules and in condensed matter
Resta R
2022
Abstract
The theory of adiabatic electron transport in a correlated condensed-matter system is rooted in a seminal paper by Niu and Thouless [J. Phys. A: Math. Gen. 17, 2453 (1984)]; I adopt here an analogous logic in order to retrieve the known expression for the adiabatic electronic flux in a molecular system [L. A. Nafie, J. Chem. Phys. 79, 4950 (1983)]. Its derivation here is considerably simpler than those available in the current quantum-chemistry literature; it also explicitly identifies the adiabaticity parameter, in terms of which the adiabatic flux and the electron density are both exact to first order. It is shown that the continuity equation is conserved to the same order. For the sake of completeness, I also briefly outline the relevance of the macroscopic electronic flux to the physics of solids and liquids.File | Dimensione | Formato | |
---|---|---|---|
prod_469328-doc_190041.pdf
accesso aperto
Descrizione: Adiabatic electronic flux in molecules and in condensed matter
Tipologia:
Versione Editoriale (PDF)
Licenza:
Altro tipo di licenza
Dimensione
4.31 MB
Formato
Adobe PDF
|
4.31 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.