This study aimed to identify and characterise indoor sources of particulate matter (PM) in domestic environments. 74 inhabited apartments located in the urban area of Gela (Sicily, Italy), close to a refinery, and in three villages of the hinterland were evaluated, in real-world conditions, for the elemental composition of PM2.5. The samples were collected simultaneously inside and outside each apartment for 48 h. In addition, two of the apartments were simultaneously studied for four weeks. The elemental composition of PM2.5 was determined by applying a chemical fractionation procedure followed by inductively-coupled plasma spectrometry analysis, with both optical emission and mass detection. The extractable, more bio-accessible fraction (ext), and the mineralised residual fraction (res) of each element were determined, thus increasing the selectivity of elements as source tracers. Indoor air in the considered apartments was affected by both outdoor pollution and specific indoor emission sources. The behaviour of each source was studied in detail, identifying a reliable tracer: Tires for soil, Asext for industrial sources, Vext for heavy oil combustion, Ce for cigarette smoking and Mo for the use of vacuum dust cleaners. Asext and Vext showed an excellent infiltration capacity, while the concentration of Tires was affected by a low infiltration capacity and by the contribution of particles re-suspension caused by the residents' movements. In the case of Ce and Mo, indoor concentrations were much higher than outdoor with a high variability among the apartments, due to the inhabitants' habits concerning cigarette smoke and use of electric appliances. To test the overall effect of the concomitant exposure to the identified sources on Wh12 M and on DDA, a WQS analysis was conducted. Cigarette smoking and heavily oil combustion driven the Wh12 M odds increase, while the DDA odds increase was mainly driven by heavily oil combustion and the use of vacuum dust cleaners

PM2.5 elemental composition in indoor residential environments and co-exposure effects on respiratory health in an industrial area

Silvia Canepari;Gaspare Drago;Silvia Ruggieri;Elisa Eleonora Tavormina;Fabio Cibella;Cinzia Perrino
2022

Abstract

This study aimed to identify and characterise indoor sources of particulate matter (PM) in domestic environments. 74 inhabited apartments located in the urban area of Gela (Sicily, Italy), close to a refinery, and in three villages of the hinterland were evaluated, in real-world conditions, for the elemental composition of PM2.5. The samples were collected simultaneously inside and outside each apartment for 48 h. In addition, two of the apartments were simultaneously studied for four weeks. The elemental composition of PM2.5 was determined by applying a chemical fractionation procedure followed by inductively-coupled plasma spectrometry analysis, with both optical emission and mass detection. The extractable, more bio-accessible fraction (ext), and the mineralised residual fraction (res) of each element were determined, thus increasing the selectivity of elements as source tracers. Indoor air in the considered apartments was affected by both outdoor pollution and specific indoor emission sources. The behaviour of each source was studied in detail, identifying a reliable tracer: Tires for soil, Asext for industrial sources, Vext for heavy oil combustion, Ce for cigarette smoking and Mo for the use of vacuum dust cleaners. Asext and Vext showed an excellent infiltration capacity, while the concentration of Tires was affected by a low infiltration capacity and by the contribution of particles re-suspension caused by the residents' movements. In the case of Ce and Mo, indoor concentrations were much higher than outdoor with a high variability among the apartments, due to the inhabitants' habits concerning cigarette smoke and use of electric appliances. To test the overall effect of the concomitant exposure to the identified sources on Wh12 M and on DDA, a WQS analysis was conducted. Cigarette smoking and heavily oil combustion driven the Wh12 M odds increase, while the DDA odds increase was mainly driven by heavily oil combustion and the use of vacuum dust cleaners
2022
Istituto sull'Inquinamento Atmosferico - IIA
Istituto per la Ricerca e l'Innovazione Biomedica -IRIB
Source tracers
Chemical fractionation
Infiltration
Indoor air quality
Weighted quantile sum regression
Asthma
File in questo prodotto:
File Dimensione Formato  
prod_473301-doc_192833.pdf

accesso aperto

Descrizione: Lavoro pubblicato
Tipologia: Versione Editoriale (PDF)
Dimensione 10.87 MB
Formato Adobe PDF
10.87 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/413716
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact