Bayesian estimation is a powerful theoretical paradigm for the operation of the approach to parameter estimation. However, the Bayesian method for statistical inference generally suffers from demanding calibration requirements that have so far restricted its use to systems that can be explicitly modeled. In this theoretical study, we formulate parameter estimation as a classification task and use artificial neural networks to efficiently perform Bayesian estimation. We show that the network's posterior distribution is centered at the true (unknown) value of the parameter within an uncertainty given by the inverse Fisher information, representing the ultimate sensitivity limit for the given apparatus. When only a limited number of calibration measurements are available, our machine-learning-based procedure outperforms standard calibration methods. Our machine-learning-based procedure is model independent, and is thus well suited to "black-box sensors", which lack simple explicit fitting models. Thus, our work paves the way for Bayesian quantum sensors that can take advantage of complex nonclassical quantum states and/or adaptive protocols. These capabilities can significantly enhance the sensitivity of future devices.

A machine learning approach to Bayesian parameter estimation

Nolan S;Smerzi A;
2021

Abstract

Bayesian estimation is a powerful theoretical paradigm for the operation of the approach to parameter estimation. However, the Bayesian method for statistical inference generally suffers from demanding calibration requirements that have so far restricted its use to systems that can be explicitly modeled. In this theoretical study, we formulate parameter estimation as a classification task and use artificial neural networks to efficiently perform Bayesian estimation. We show that the network's posterior distribution is centered at the true (unknown) value of the parameter within an uncertainty given by the inverse Fisher information, representing the ultimate sensitivity limit for the given apparatus. When only a limited number of calibration measurements are available, our machine-learning-based procedure outperforms standard calibration methods. Our machine-learning-based procedure is model independent, and is thus well suited to "black-box sensors", which lack simple explicit fitting models. Thus, our work paves the way for Bayesian quantum sensors that can take advantage of complex nonclassical quantum states and/or adaptive protocols. These capabilities can significantly enhance the sensitivity of future devices.
2021
Istituto Nazionale di Ottica - INO
quantum; states
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/413739
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? ND
social impact