Given an open set ?, we consider the problem of providing sharp lower bounds for ? (?), i.e. its second Dirichlet eigenvalue of the p-Laplace operator. After presenting the nonlinear analogue of the Hong-Krahn-Szego inequality, asserting that the disjoint unions of two equal balls minimize ? among open sets of given measure, we improve this spectral inequality by means of a quantitative stability estimate. The extremal cases p = 1 and p = ? are considered as well. © 2012 Springer-Verlag Berlin Heidelberg.
On the Hong-Krahn-Szego inequality for the p-Laplace operator
Franzina G
2013
Abstract
Given an open set ?, we consider the problem of providing sharp lower bounds for ? (?), i.e. its second Dirichlet eigenvalue of the p-Laplace operator. After presenting the nonlinear analogue of the Hong-Krahn-Szego inequality, asserting that the disjoint unions of two equal balls minimize ? among open sets of given measure, we improve this spectral inequality by means of a quantitative stability estimate. The extremal cases p = 1 and p = ? are considered as well. © 2012 Springer-Verlag Berlin Heidelberg.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
bra-fra_13-2.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Altro tipo di licenza
Dimensione
277.78 kB
Formato
Adobe PDF
|
277.78 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.