Given an open set ?, we consider the problem of providing sharp lower bounds for ? (?), i.e. its second Dirichlet eigenvalue of the p-Laplace operator. After presenting the nonlinear analogue of the Hong-Krahn-Szego inequality, asserting that the disjoint unions of two equal balls minimize ? among open sets of given measure, we improve this spectral inequality by means of a quantitative stability estimate. The extremal cases p = 1 and p = ? are considered as well. © 2012 Springer-Verlag Berlin Heidelberg.

On the Hong-Krahn-Szego inequality for the p-Laplace operator

Franzina G
2013

Abstract

Given an open set ?, we consider the problem of providing sharp lower bounds for ? (?), i.e. its second Dirichlet eigenvalue of the p-Laplace operator. After presenting the nonlinear analogue of the Hong-Krahn-Szego inequality, asserting that the disjoint unions of two equal balls minimize ? among open sets of given measure, we improve this spectral inequality by means of a quantitative stability estimate. The extremal cases p = 1 and p = ? are considered as well. © 2012 Springer-Verlag Berlin Heidelberg.
2013
Istituto Applicazioni del Calcolo ''Mauro Picone''
Nonlinear eigenvalue problems
Hong-Krahn-Szego inequality
Stability for eigenvalues
File in questo prodotto:
File Dimensione Formato  
bra-fra_13-2.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Altro tipo di licenza
Dimensione 277.78 kB
Formato Adobe PDF
277.78 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/413888
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact