Beach wracks are temporary accumulations of vegetal detritus that can be found along coastlines all over the world. Although beach wracks are often perceived as a nuisance for beach users, they play a crucial ecological role in carbon and nutrient connectivity across ecosystem boundaries, especially when they reach a relevant size, as in the case of the wedge-shaped seagrass accumulations called banquette. In this study, three-dimensional mapping of a giant Posidonia oceanica banquette was carried out for the first time using high-resolution UAV photogrammetry combined with field sampling and compositional and chemical analysis. The combined approach allowed a reliable estimation of the amount and spatial distribution of both vegetal biomass and sedimentary mass, as well as of total carbon, nitrogen and phosphorus content, revealing that i) banquette act as a sediment trap and represent hot spots of seagrass biomass and carbon accumulation; ii) banquette thickness, rather than the distance from the sea, influences the spatial distribution of all variables. Moreover, high-resolution digital elevation models (DEM) revealed discontinuous patterns in detritus accumulation resulting in an unknown banquette type here termed "Multiple Mega-Ridge banquette" (MMR banquette). On the one hand, this study highlighted the high potential of the UAV approach in very accurately 3D mapping and monitoring of these structures, with relevant implications for ecosystem service estimation and coastal zone management. On the other hand, it opened new questions about the role played by temporary beach wracks and, in particular, by P. oceanica banquette in the blue carbon exchange across land-ocean boundaries

3D-Reconstruction of a Giant Posidonia oceanica Beach Wrack (Banquette): Sizing Biomass, Carbon and Nutrient Stocks by Combining Field Data With High-Resolution UAV Photogrammetry

Alessandro Bosman
;
2022

Abstract

Beach wracks are temporary accumulations of vegetal detritus that can be found along coastlines all over the world. Although beach wracks are often perceived as a nuisance for beach users, they play a crucial ecological role in carbon and nutrient connectivity across ecosystem boundaries, especially when they reach a relevant size, as in the case of the wedge-shaped seagrass accumulations called banquette. In this study, three-dimensional mapping of a giant Posidonia oceanica banquette was carried out for the first time using high-resolution UAV photogrammetry combined with field sampling and compositional and chemical analysis. The combined approach allowed a reliable estimation of the amount and spatial distribution of both vegetal biomass and sedimentary mass, as well as of total carbon, nitrogen and phosphorus content, revealing that i) banquette act as a sediment trap and represent hot spots of seagrass biomass and carbon accumulation; ii) banquette thickness, rather than the distance from the sea, influences the spatial distribution of all variables. Moreover, high-resolution digital elevation models (DEM) revealed discontinuous patterns in detritus accumulation resulting in an unknown banquette type here termed "Multiple Mega-Ridge banquette" (MMR banquette). On the one hand, this study highlighted the high potential of the UAV approach in very accurately 3D mapping and monitoring of these structures, with relevant implications for ecosystem service estimation and coastal zone management. On the other hand, it opened new questions about the role played by temporary beach wracks and, in particular, by P. oceanica banquette in the blue carbon exchange across land-ocean boundaries
2022
Istituto di Geologia Ambientale e Geoingegneria - IGAG
blue carbon
nitrogen
drone
seascape
seagrass
litter
detritus
mega-ridge banquette
File in questo prodotto:
File Dimensione Formato  
prod_468606-doc_189360.pdf

accesso aperto

Descrizione: Paper
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 735.57 kB
Formato Adobe PDF
735.57 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/414752
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact