Wavelet and Fourier regularization methods are effective for the nonparametric regression problem. We prove that the loss function evaluated for the regularization parameter chosen through GCV or Mallows criteria is asymptotically equivalent in probability to its minimum over the regularization parameter. © 2001 Elsevier Science B.V.

Convergence in probability of the Mallows and GCV wavelet and Fourier regularization methods

Amato U;De Canditiis D
2001

Abstract

Wavelet and Fourier regularization methods are effective for the nonparametric regression problem. We prove that the loss function evaluated for the regularization parameter chosen through GCV or Mallows criteria is asymptotically equivalent in probability to its minimum over the regularization parameter. © 2001 Elsevier Science B.V.
2001
Istituto Applicazioni del Calcolo ''Mauro Picone''
Mallows criterion
GCV
Nonparametric regression
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/414960
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact