High fidelity quantum information processing requires a combination of fast gates and long-lived quantum memories. In this Letter, we propose a hybrid architecture, where a parity-protected superconducting qubit is directly coupled to a Majorana qubit, which plays the role of a quantum memory. The superconducting qubit is based upon a ?-periodic Josephson junction realized with gate-tunable semiconducting wires, where the tunneling of individual Cooper pairs is suppressed. One of the wires additionally contains four Majorana zero modes that define a qubit. We demonstrate that this enables the implementation of a SWAP gate, allowing for the transduction of quantum information between the topological and conventional qubit. This architecture combines fast gates, which can be realized with the superconducting qubit, with a topologically protected Majorana memory.

SWAP Gate between a Majorana Qubit and a Parity-Protected Superconducting Qubit

Chirolli L;
2022

Abstract

High fidelity quantum information processing requires a combination of fast gates and long-lived quantum memories. In this Letter, we propose a hybrid architecture, where a parity-protected superconducting qubit is directly coupled to a Majorana qubit, which plays the role of a quantum memory. The superconducting qubit is based upon a ?-periodic Josephson junction realized with gate-tunable semiconducting wires, where the tunneling of individual Cooper pairs is suppressed. One of the wires additionally contains four Majorana zero modes that define a qubit. We demonstrate that this enables the implementation of a SWAP gate, allowing for the transduction of quantum information between the topological and conventional qubit. This architecture combines fast gates, which can be realized with the superconducting qubit, with a topologically protected Majorana memory.
2022
Istituto Nanoscienze - NANO
Memory architecture; Quantum optics; Topology
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/415519
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact