We consider the Dirichlet eigenvalue problem, (the eigenfunction) and ? > 0 (the eigen value), ? is an arbitrary domain in RN with finite measure, 1 < p < ?, 1 < q < p*, p* = Np/(N - p) if 1 < p < N and p* = ? if p >= N. We study several existence and uniqueness results as well as some properties of the solutions. Moreover, we indicate how to extend to the general case some proofs known in the classical case p = q. © 2010 Texas State University - San Marcos.

Existence and uniqueness for a p-laplacian nonlinear eigenvalue problem

Franzina Giovanni
;
2010

Abstract

We consider the Dirichlet eigenvalue problem, (the eigenfunction) and ? > 0 (the eigen value), ? is an arbitrary domain in RN with finite measure, 1 < p < ?, 1 < q < p*, p* = Np/(N - p) if 1 < p < N and p* = ? if p >= N. We study several existence and uniqueness results as well as some properties of the solutions. Moreover, we indicate how to extend to the general case some proofs known in the classical case p = q. © 2010 Texas State University - San Marcos.
2010
Istituto Applicazioni del Calcolo ''Mauro Picone''
Eigenvalues;
Existence;
p-laplacian;
Uniqueness results
File in questo prodotto:
File Dimensione Formato  
fra-lam_10.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Altro tipo di licenza
Dimensione 346.31 kB
Formato Adobe PDF
346.31 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/417214
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? ND
social impact