The plasmoid formation in collisionless plasmas, where magnetic reconnection within turbulence may take place driven by the electron inertia, is analyzed. We find a complex situation in which, due to the presence of strong velocity shears, the typical plasmoid formation, observed to influence the energy cascade in the magnetohydrodynamic context, has to coexist with the Kelvin-Helmholtz (KH) instability. We find that the current density layers may undergo the plasmoid or the KH instability depending on the local values of the magnetic and velocity fields. The competition among these instabilities affects not only the evolution of the current sheets, that may generate plasmoid chains or KH-driven vortices, but also the energy cascade, that is different for the magnetic and kinetic spectra.

Coexistence of Plasmoid and Kelvin-Helmholtz Instabilities in Collisionless Plasma Turbulence

Borgogno D.;Grasso D.;Comisso L.
2022

Abstract

The plasmoid formation in collisionless plasmas, where magnetic reconnection within turbulence may take place driven by the electron inertia, is analyzed. We find a complex situation in which, due to the presence of strong velocity shears, the typical plasmoid formation, observed to influence the energy cascade in the magnetohydrodynamic context, has to coexist with the Kelvin-Helmholtz (KH) instability. We find that the current density layers may undergo the plasmoid or the KH instability depending on the local values of the magnetic and velocity fields. The competition among these instabilities affects not only the evolution of the current sheets, that may generate plasmoid chains or KH-driven vortices, but also the energy cascade, that is different for the magnetic and kinetic spectra.
2022
Istituto dei Sistemi Complessi - ISC
RECONNECTION; DYNAMICS
File in questo prodotto:
File Dimensione Formato  
prod_470996-doc_191170.pdf

accesso aperto

Descrizione: Coexistence of Plasmoid and Kelvin-Helmholtz Instabilities in Collisionless Plasma Turbulence
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.73 MB
Formato Adobe PDF
1.73 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/417379
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact