Microcrystalline n-type emitters, that, compared to a-Si:H ones, ensure better electronic properties and better transparency in the visible, were used to fabricate heterojunction solar cells on crystalline silicon. The substrate surface was passivated by the deposition of a very thin intrinsic a-Si:H buffer layer. The microcrystalline n-type emitters were deposited by radio-frequency (rf) plasma enhanced chemical vapor deposition, using a high hydrogen diluted gas mixture. The simulation of optical spectra of n/i double layers on c-Si gives a preliminary evidence that the continuity of the intrinsic a-Si:H buffer layer is preserved after the rf deposition. The photovoltaic devices incorporating microcrystalline emitters exhibit a remarkable increase of short circuit current (J(sc)) and efficiency (a factor 1.24 and 1.38 respectively) compared to the case of a-Si:H emitters. Noticeable improvements are observed if the structure is applied to textured substrates.

Silicon heterojunction solar cells with microcrystalline emitter

Summonte C;Rizzoli R;Centurioni E;
2004

Abstract

Microcrystalline n-type emitters, that, compared to a-Si:H ones, ensure better electronic properties and better transparency in the visible, were used to fabricate heterojunction solar cells on crystalline silicon. The substrate surface was passivated by the deposition of a very thin intrinsic a-Si:H buffer layer. The microcrystalline n-type emitters were deposited by radio-frequency (rf) plasma enhanced chemical vapor deposition, using a high hydrogen diluted gas mixture. The simulation of optical spectra of n/i double layers on c-Si gives a preliminary evidence that the continuity of the intrinsic a-Si:H buffer layer is preserved after the rf deposition. The photovoltaic devices incorporating microcrystalline emitters exhibit a remarkable increase of short circuit current (J(sc)) and efficiency (a factor 1.24 and 1.38 respectively) compared to the case of a-Si:H emitters. Noticeable improvements are observed if the structure is applied to textured substrates.
2004
Istituto per la Microelettronica e Microsistemi - IMM
Microcrystalline silicon thin films
heterojunction solar cells
PECVD
hydrogen diluted gas mixtures
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/41749
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact