This article summarizes some of the relevant features exhibited by binary mixtures of Bose-Einstein condensates in the presence of coherent coupling at zero temperature. The coupling, which is experimentally produced by proper photon transitions, can involve either negligible momentum transfer from the electromagnetic radiation (Rabi coupling) or large momentum transfer (Raman coupling) associated with spin-orbit effects. The nature of the quantum phases exhibited by coherently coupled mixtures is discussed in detail, including their paramagnetic, ferromagnetic, and, in the case of spin-orbit coupling, supersolid phases. The behavior of the corresponding elementary excitations is discussed, with explicit emphasis on the novel features caused by the spin-like degree of freedom. Focus is further given to the topological excitations (solitons, vortices) as well as to the superfluid properties. This review also points out relevant open questions that deserve more systematic theoretical and experimental investigations.

Coherently Coupled Mixtures of Ultracold Atomic Gases

Recati A;Stringari S
2022

Abstract

This article summarizes some of the relevant features exhibited by binary mixtures of Bose-Einstein condensates in the presence of coherent coupling at zero temperature. The coupling, which is experimentally produced by proper photon transitions, can involve either negligible momentum transfer from the electromagnetic radiation (Rabi coupling) or large momentum transfer (Raman coupling) associated with spin-orbit effects. The nature of the quantum phases exhibited by coherently coupled mixtures is discussed in detail, including their paramagnetic, ferromagnetic, and, in the case of spin-orbit coupling, supersolid phases. The behavior of the corresponding elementary excitations is discussed, with explicit emphasis on the novel features caused by the spin-like degree of freedom. Focus is further given to the topological excitations (solitons, vortices) as well as to the superfluid properties. This review also points out relevant open questions that deserve more systematic theoretical and experimental investigations.
2022
Istituto Nazionale di Ottica - INO
spinor Bose-Einstein condensates; superfluidity; magnetism; spin-orbit coupling
File in questo prodotto:
File Dimensione Formato  
prod_473981-doc_193244.pdf

accesso aperto

Descrizione: Coherently Coupled Mixtures of Ultracold Atomic Gases
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.62 MB
Formato Adobe PDF
1.62 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/417754
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 21
social impact