The applicability of the capacity-based design approach to buildings consisting of cross-laminated timber (CLT) shear walls has lacked analytical expressions that depend on the structural type and failure mechanisms. This project developed such expressions for multipanel CLT shear walls used in multistory buildings with emphasis on including the bidirectional contribution of the angle brackets. The proposed method addresses the hierarchy of yielding among different groups of dissipative zones. New categories with dissipative and limited energy dissipative capabilities were introduced, and expressions for overstrength factors were defined. The proposed procedure was verified using numerical models, and insignificant differences were obtained between the proposed method and the numerical models. It can be concluded that when the proposed conditions are met, the desired coupled-panel behavior can be achieved and the angle brackets can be assured to remain elastic. It was shown that when the applied shear force is calculated based on the proposed methodology, it correctly coincides with the yielding of the hold-down obtained from the numerical models. Additionally, a case study was presented for a two-story building composed of multipanel CLT shear walls to demonstrate the suitability of procedure beyond a single story.

Design of Multipanel CLT Shear Walls with Bidirectional Mechanical Anchors following Capacity-Based Design Principle

Casagrande D
2022

Abstract

The applicability of the capacity-based design approach to buildings consisting of cross-laminated timber (CLT) shear walls has lacked analytical expressions that depend on the structural type and failure mechanisms. This project developed such expressions for multipanel CLT shear walls used in multistory buildings with emphasis on including the bidirectional contribution of the angle brackets. The proposed method addresses the hierarchy of yielding among different groups of dissipative zones. New categories with dissipative and limited energy dissipative capabilities were introduced, and expressions for overstrength factors were defined. The proposed procedure was verified using numerical models, and insignificant differences were obtained between the proposed method and the numerical models. It can be concluded that when the proposed conditions are met, the desired coupled-panel behavior can be achieved and the angle brackets can be assured to remain elastic. It was shown that when the applied shear force is calculated based on the proposed methodology, it correctly coincides with the yielding of the hold-down obtained from the numerical models. Additionally, a case study was presented for a two-story building composed of multipanel CLT shear walls to demonstrate the suitability of procedure beyond a single story.
2022
Istituto per la BioEconomia - IBE
Cross-laminated timber (CLT)
Capacity-based design
Bidirectional
Angle brackets
Seismic load
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/417758
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact