In this paper, we discuss a new approach to the analysis of multi/hyper-spectral data sets, based on the Interesting Features Finder (IFF) method. The IFF is a simple algorithm recently proposed in the framework of Laser-Induced Breakdown Spectroscopy (LIBS) spectral analysis for detecting 'interesting' spectral features independently of the variance they represent in a set of spectra. To test the usefulness of this method to multispectral analysis, we show in this paper the results of its application on the recovery of a 'lost' painting from the Etruscan hypogeal tomb of the Volumni (3rd century BCE--1st century CE) in Perugia, Italy. The results obtained applying the IFF algorithm are compared with the results obtained by applying Blind Source Separation (BSS) techniques and Self-Organized Maps (SOM) to a multispectral set of 17 fluorescence and reflection images. From this comparison emerges the possibility of using the IFF algorithm to obtain rapidly and simultaneously, by varying a single parameter in a range from 0 to 1, several sets of elaborated images all containing the 'interesting' features and carrying information comparable to what could have been obtained by BSS and SOM, respectively.
Interesting Features Finder: A New Approach to Multispectral Image Analysis
Vincenzo Palleschi;
2022
Abstract
In this paper, we discuss a new approach to the analysis of multi/hyper-spectral data sets, based on the Interesting Features Finder (IFF) method. The IFF is a simple algorithm recently proposed in the framework of Laser-Induced Breakdown Spectroscopy (LIBS) spectral analysis for detecting 'interesting' spectral features independently of the variance they represent in a set of spectra. To test the usefulness of this method to multispectral analysis, we show in this paper the results of its application on the recovery of a 'lost' painting from the Etruscan hypogeal tomb of the Volumni (3rd century BCE--1st century CE) in Perugia, Italy. The results obtained applying the IFF algorithm are compared with the results obtained by applying Blind Source Separation (BSS) techniques and Self-Organized Maps (SOM) to a multispectral set of 17 fluorescence and reflection images. From this comparison emerges the possibility of using the IFF algorithm to obtain rapidly and simultaneously, by varying a single parameter in a range from 0 to 1, several sets of elaborated images all containing the 'interesting' features and carrying information comparable to what could have been obtained by BSS and SOM, respectively.File | Dimensione | Formato | |
---|---|---|---|
prod_475883-doc_194430.pdf
accesso aperto
Descrizione: Interesting Features Finder: A New Approach to Multispectral Image Analysis
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
3.33 MB
Formato
Adobe PDF
|
3.33 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.