We analyze a second-order accurate implicit-symplectic (IMSP) scheme for reaction-diffusion systems modeling spatiotemporal dynamics of predator-prey populations. We prove stability and errors estimates of the semi-discrete-in-time approximations, under positivity assumptions. The numerical simulations confirm the theoretically derived rates of convergence and show an improved accuracy in the second-order IMSP in comparison with the first-order IMSP, at same computational cost.

STABILITY AND ERRORS ESTIMATES OF A SECOND-ORDER IMSP SCHEME

Diele Fasma
Co-primo
;
Martiradonna Angela
Co-primo
;
2022

Abstract

We analyze a second-order accurate implicit-symplectic (IMSP) scheme for reaction-diffusion systems modeling spatiotemporal dynamics of predator-prey populations. We prove stability and errors estimates of the semi-discrete-in-time approximations, under positivity assumptions. The numerical simulations confirm the theoretically derived rates of convergence and show an improved accuracy in the second-order IMSP in comparison with the first-order IMSP, at same computational cost.
2022
Istituto Applicazioni del Calcolo ''Mauro Picone''
Reaction-diffusion systems
predator-prey dynamics
semi-discrete-in-time formulation
Galerkin finite-element approximation
partitioned Runge-Kutta schemes
File in questo prodotto:
File Dimensione Formato  
10.3934_dcdss.2022076.pdf

solo utenti autorizzati

Descrizione: articolo
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 608.15 kB
Formato Adobe PDF
608.15 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/418834
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact