Food allergy has been indicated as the most frequent adverse reaction to food ingredients over the past few years. Since the only way to avoid the occurrence of allergic phenomena is to eliminate allergenic foods, it is essential to have complete and accurate information on the components of foodstuff. In this framework, it is mandatory and crucial to provide fast, cost-effective, affordable, and reliable analysis methods for the screening of specific allergen content in food products. This review reports the research advancements concerning food allergen detection, involving electrochemical biosensors. It focuses on the sensing strategies evidencing different types of recognition elements such as antibodies, nucleic acids, and cells, among others, the nanomaterial role, the several electrochemical techniques involved and last, but not least, the ad hoc electrodic surface modification approaches. Moreover, a selection of the most recent electrochemical sensors for allergen detection are reported and critically analyzed in terms of the sensors' analytical performances. Finally, advantages, limitations, and potentialities for practical applications of electrochemical biosensors for allergens are discussed.

Recent Advances in Electrochemical Sensing Strategies for Food Allergen Detection

Antonella Curulli
2022

Abstract

Food allergy has been indicated as the most frequent adverse reaction to food ingredients over the past few years. Since the only way to avoid the occurrence of allergic phenomena is to eliminate allergenic foods, it is essential to have complete and accurate information on the components of foodstuff. In this framework, it is mandatory and crucial to provide fast, cost-effective, affordable, and reliable analysis methods for the screening of specific allergen content in food products. This review reports the research advancements concerning food allergen detection, involving electrochemical biosensors. It focuses on the sensing strategies evidencing different types of recognition elements such as antibodies, nucleic acids, and cells, among others, the nanomaterial role, the several electrochemical techniques involved and last, but not least, the ad hoc electrodic surface modification approaches. Moreover, a selection of the most recent electrochemical sensors for allergen detection are reported and critically analyzed in terms of the sensors' analytical performances. Finally, advantages, limitations, and potentialities for practical applications of electrochemical biosensors for allergens are discussed.
2022
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
allergens;
electrochemical (bio)sensors
nanomaterials
food safety
immunosensors
aptasensors;
cell-based biosensors
genosensors;
molecularly imprinted polymer (MIP) based biosensors
bacteriophage-based biosensors
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/419297
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact