Search engine ranking pipelines are commonly based on large ensembles of machine-learned decision trees. The tight constraints on query response time recently motivated researchers to investigate algorithms to make faster the traversal of the additive ensemble or to early terminate the evaluation of documents that are unlikely to be ranked among the top-k. In this paper, we investigate the novel problem of query-level early exiting, aimed at deciding the profitability of early stopping the traversal of the ranking ensemble for all the candidate documents to be scored for a query, by simply returning a ranking based on the additive scores computed by a limited portion of the ensemble. Besides the obvious advantage on query latency and throughput, we address the possible positive impact on ranking effectiveness. To this end, we study the actual contribution of incremental portions of the tree ensemble to the ranking of the top-k documents scored for a given query. Our main finding is that queries exhibit different behaviors as scores are accumulated during the traversal of the ensemble and that query-level early stopping can remarkably improve ranking quality. We present a reproducible and comprehensive experimental evaluation, conducted on two public datasets, showing that query-level early exiting achieves an overall gain of up to 7.5% in terms of NDCG@10 with a speedup of the scoring process of up to 2.2x.

Query-level early exit for additive learning-to-rank ensembles

Nardini FM;Perego R;Trani S
2020

Abstract

Search engine ranking pipelines are commonly based on large ensembles of machine-learned decision trees. The tight constraints on query response time recently motivated researchers to investigate algorithms to make faster the traversal of the additive ensemble or to early terminate the evaluation of documents that are unlikely to be ranked among the top-k. In this paper, we investigate the novel problem of query-level early exiting, aimed at deciding the profitability of early stopping the traversal of the ranking ensemble for all the candidate documents to be scored for a query, by simply returning a ranking based on the additive scores computed by a limited portion of the ensemble. Besides the obvious advantage on query latency and throughput, we address the possible positive impact on ranking effectiveness. To this end, we study the actual contribution of incremental portions of the tree ensemble to the ranking of the top-k documents scored for a given query. Our main finding is that queries exhibit different behaviors as scores are accumulated during the traversal of the ensemble and that query-level early stopping can remarkably improve ranking quality. We present a reproducible and comprehensive experimental evaluation, conducted on two public datasets, showing that query-level early exiting achieves an overall gain of up to 7.5% in terms of NDCG@10 with a speedup of the scoring process of up to 2.2x.
2020
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
9781450380164
Learning to rank
Efficiency/effectiveness trade-offs
Query-level earlyexit
Additive regression trees
File in questo prodotto:
File Dimensione Formato  
prod_440220-doc_158112.pdf

non disponibili

Descrizione: Query-level early exit for additive learning-to-rank ensembles
Tipologia: Versione Editoriale (PDF)
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_440220-doc_158113.pdf

accesso aperto

Descrizione: preprint
Tipologia: Versione Editoriale (PDF)
Dimensione 577.78 kB
Formato Adobe PDF
577.78 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/420625
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact