Studio dei meccanismi di moltiplicazione di carica in nanocristalli isolati e interagenti

The conversion of solar radiation into electric current with high efficiency is one of the most important topics of modern scientific research, as it holds great potential as a source of clean and renewable energy. Exploitation of interaction between nanocrystals seems to be a promising route to the establishment of third-generation photovoltaics. Here, we adopt a fully ab initio scheme to estimate the role of nanoparticle interplay in the carrier multiplication dynamics of interacting silicon nanocrystals. Energy and charge transfer-based carrier multiplication events are studied as a function of nanocrystal separation, demonstrating the benefits induced by the wavefunction sharing regime. We prove the relevance of these recombinative mechanisms for photovoltaic applications in the case of silicon nanocrystals arranged in dense arrays, quantifying at an atomic scale which conditions maximize the outcome. © 2012 Macmillan Publishers Limited. All rights reserved.

Carrier multiplication between interacting nanocrystals for fostering silicon-based photovoltaics

Marri I;
2012

Abstract

The conversion of solar radiation into electric current with high efficiency is one of the most important topics of modern scientific research, as it holds great potential as a source of clean and renewable energy. Exploitation of interaction between nanocrystals seems to be a promising route to the establishment of third-generation photovoltaics. Here, we adopt a fully ab initio scheme to estimate the role of nanoparticle interplay in the carrier multiplication dynamics of interacting silicon nanocrystals. Energy and charge transfer-based carrier multiplication events are studied as a function of nanocrystal separation, demonstrating the benefits induced by the wavefunction sharing regime. We prove the relevance of these recombinative mechanisms for photovoltaic applications in the case of silicon nanocrystals arranged in dense arrays, quantifying at an atomic scale which conditions maximize the outcome. © 2012 Macmillan Publishers Limited. All rights reserved.
2012
Istituto Nanoscienze - NANO
Studio dei meccanismi di moltiplicazione di carica in nanocristalli isolati e interagenti
carrier multiplication
silicon
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/421221
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 114
  • ???jsp.display-item.citation.isi??? ND
social impact