Soil physical and chemical properties play a central role in plant growth, influencing the availability of air, nutrients, and water. The aim of this two-year study was to evaluate the effect of soil texture and chemical properties (pH, electrical conductivity, organic carbon, organic matter, total, and active lime) on saffron (Crocus sativusL.) growth, yield, and quality. Corms were planted in pots filled with seven different soil textures obtained mixing an increasing quantity (33% and 66%) of sand to a clay soil (S1) and to a clay loam soil (S2) compared to a full (100%) sandy soil as a control (S7). A randomized complete block design comprising of seven pots with different types of soil (S1, S2, S3, S4, S5, S6, and S7) replicated three times was used. The results showed that the highest flower number (320.3 n m(-2)), stigma yield (2.0 g m(-2)), daughter corm production (7.9 kg m(-2)), and horizontal diameter (3.1 cm) were derived from S3 and S4 soils. These were characterized by a loam and sandy-loam texture, not very calcareous, with a sub-alkaline and neutral pH, low electrical conductivity, a content of organic matter between 5.46 and 8.67 g kg(-1), and a content of active lime between 21.25 and 26.25 g kg(-1). According to International Organization for Standardization (ISO) references, although all spice samples belonged to the first qualitative category, S1, S3, and S2 soils recorded the highest value for coloring power (290.5, 289.1, and 287.6 A(1cm)(1%)440 nm, respectively). The highest values of bittering (109.2 A(1cm)(1%)257 nm) and aromatic (26.6 A(1cm)(1%)330 nm) power were reached by S3 soil. Positive correlations were found both between color with clay and organic matter, and aroma with total calcium carbonate. In conclusion, the assessment of soil conditions is particularly important to obtain the best saffron performance in terms of stigma and daughter corms yield as well as spice qualitative traits.

The Influence of Soil Physical and Chemical Properties on Saffron (Crocus sativus L.) Growth, Yield and Quality

Cicco Nunzia;
2020

Abstract

Soil physical and chemical properties play a central role in plant growth, influencing the availability of air, nutrients, and water. The aim of this two-year study was to evaluate the effect of soil texture and chemical properties (pH, electrical conductivity, organic carbon, organic matter, total, and active lime) on saffron (Crocus sativusL.) growth, yield, and quality. Corms were planted in pots filled with seven different soil textures obtained mixing an increasing quantity (33% and 66%) of sand to a clay soil (S1) and to a clay loam soil (S2) compared to a full (100%) sandy soil as a control (S7). A randomized complete block design comprising of seven pots with different types of soil (S1, S2, S3, S4, S5, S6, and S7) replicated three times was used. The results showed that the highest flower number (320.3 n m(-2)), stigma yield (2.0 g m(-2)), daughter corm production (7.9 kg m(-2)), and horizontal diameter (3.1 cm) were derived from S3 and S4 soils. These were characterized by a loam and sandy-loam texture, not very calcareous, with a sub-alkaline and neutral pH, low electrical conductivity, a content of organic matter between 5.46 and 8.67 g kg(-1), and a content of active lime between 21.25 and 26.25 g kg(-1). According to International Organization for Standardization (ISO) references, although all spice samples belonged to the first qualitative category, S1, S3, and S2 soils recorded the highest value for coloring power (290.5, 289.1, and 287.6 A(1cm)(1%)440 nm, respectively). The highest values of bittering (109.2 A(1cm)(1%)257 nm) and aromatic (26.6 A(1cm)(1%)330 nm) power were reached by S3 soil. Positive correlations were found both between color with clay and organic matter, and aroma with total calcium carbonate. In conclusion, the assessment of soil conditions is particularly important to obtain the best saffron performance in terms of stigma and daughter corms yield as well as spice qualitative traits.
2020
Istituto di Metodologie per l'Analisi Ambientale - IMAA
soil texture
organic matter
calcium carbonate
stigma yield
crocin
corm yield
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/421744
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? ND
social impact