Field flow fractionation dielectrophoretic (FFF-DEP) devices are currently used, among the others, for the separation of tumor cells from healthy blood cells. To this end specific suspension/elution buffers (EBs), with reduced conductivity (with respect to that of the cell cytoplasm) are generally used. In this paper we investigate the long-term alterations of the cells and elution buffers. We find that the EB conductivity is critically modified within few minutes after cells suspension. In turn, this modification results in a change the ideal separation frequency of the FFF-DEP device. On the other hand we prove that DEP manipulation is preserved for more than three hours for cells suspended in the considered EBs.
Analysis of the role of elution buffers on the separation capabilities of dielectrophoretic devices
Minafra L;Forte GI;Russo G;Scalese S;La Magna A
2016
Abstract
Field flow fractionation dielectrophoretic (FFF-DEP) devices are currently used, among the others, for the separation of tumor cells from healthy blood cells. To this end specific suspension/elution buffers (EBs), with reduced conductivity (with respect to that of the cell cytoplasm) are generally used. In this paper we investigate the long-term alterations of the cells and elution buffers. We find that the EB conductivity is critically modified within few minutes after cells suspension. In turn, this modification results in a change the ideal separation frequency of the FFF-DEP device. On the other hand we prove that DEP manipulation is preserved for more than three hours for cells suspended in the considered EBs.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.