Phase transitions do not necessarily correspond to a symmetry-breaking phenomenon. This is the case of the Kosterlitz-Thouless (KT) phase transition in a two-dimensional classical XY model, a typical example of a transition stemming from a deeper phenomenon than a symmetry-breaking. Actually, the KT transition is a paradigmatic example of the successful application of topological concepts to the study of phase transition phenomena in the absence of an order parameter. Topology conceptually enters through the meaning of defects in real space. In the present work, the same kind of KT phase transition in a two-dimensional classical XY model is tackled by resorting again to a topological viewpoint, however focussed on the energy level sets in phase space rather than on topological defects in real space. Also from this point of view, the origin of the KT transition can be attributed to a topological phenomenon. In fact, the transition is detected through peculiar geometrical changes of the energy level sets which, after a theorem in differential topology, are direct probes of topological changes of these level sets.

Geometrical and topological study of the Kosterlitz-Thouless phase transition in the XY model in two dimensions

Franzosi Roberto;
2021

Abstract

Phase transitions do not necessarily correspond to a symmetry-breaking phenomenon. This is the case of the Kosterlitz-Thouless (KT) phase transition in a two-dimensional classical XY model, a typical example of a transition stemming from a deeper phenomenon than a symmetry-breaking. Actually, the KT transition is a paradigmatic example of the successful application of topological concepts to the study of phase transition phenomena in the absence of an order parameter. Topology conceptually enters through the meaning of defects in real space. In the present work, the same kind of KT phase transition in a two-dimensional classical XY model is tackled by resorting again to a topological viewpoint, however focussed on the energy level sets in phase space rather than on topological defects in real space. Also from this point of view, the origin of the KT transition can be attributed to a topological phenomenon. In fact, the transition is detected through peculiar geometrical changes of the energy level sets which, after a theorem in differential topology, are direct probes of topological changes of these level sets.
2021
Istituto Nazionale di Ottica - INO
classical phase transitions
dynamical processes
numerical simulations
File in questo prodotto:
File Dimensione Formato  
prod_447560-doc_161299.pdf

solo utenti autorizzati

Descrizione: Geometrical and topological study of the Kosterlitz-Thouless phase transition in the XY model in two dimensions
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.46 MB
Formato Adobe PDF
1.46 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/423183
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact