Deep Learning models proved to be able to generate highly discriminative image descriptors, named deep features, suitable for similarity search tasks such as Person Re-Identification and Image Retrieval. Typically, these models are trained by employing high-resolution datasets, therefore reducing the reliability of the produced representations when low-resolution images are involved. The similarity search task becomes even more challenging in the cross-resolution scenarios, i.e., when a low-resolution query image has to be matched against a database containing descriptors generated from images at different, and usually high, resolutions. To solve this issue, we proposed a deep learning-based approach by which we empowered a ResNet-like architecture to generate resolution-robust deep features. Once trained, our models were able to generate image descriptors less brittle to resolution variations, thus being useful to fulfill a similarity search task in cross-resolution scenarios. To asses their performance, we used synthetic as well as natural low-resolution images. An immediate advantage of our approach is that there is no need for Super-Resolution techniques, thus avoiding the need to synthesize queries at higher resolutions.
Cross-resolution deep features based image search
Massoli FV;Falchi F;Gennaro C;Amato G
2020
Abstract
Deep Learning models proved to be able to generate highly discriminative image descriptors, named deep features, suitable for similarity search tasks such as Person Re-Identification and Image Retrieval. Typically, these models are trained by employing high-resolution datasets, therefore reducing the reliability of the produced representations when low-resolution images are involved. The similarity search task becomes even more challenging in the cross-resolution scenarios, i.e., when a low-resolution query image has to be matched against a database containing descriptors generated from images at different, and usually high, resolutions. To solve this issue, we proposed a deep learning-based approach by which we empowered a ResNet-like architecture to generate resolution-robust deep features. Once trained, our models were able to generate image descriptors less brittle to resolution variations, thus being useful to fulfill a similarity search task in cross-resolution scenarios. To asses their performance, we used synthetic as well as natural low-resolution images. An immediate advantage of our approach is that there is no need for Super-Resolution techniques, thus avoiding the need to synthesize queries at higher resolutions.File | Dimensione | Formato | |
---|---|---|---|
prod_445013-doc_160026.pdf
accesso aperto
Descrizione: Postprint
Tipologia:
Versione Editoriale (PDF)
Dimensione
1.25 MB
Formato
Adobe PDF
|
1.25 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.