Deep Learning models proved to be able to generate highly discriminative image descriptors, named deep features, suitable for similarity search tasks such as Person Re-Identification and Image Retrieval. Typically, these models are trained by employing high-resolution datasets, therefore reducing the reliability of the produced representations when low-resolution images are involved. The similarity search task becomes even more challenging in the cross-resolution scenarios, i.e., when a low-resolution query image has to be matched against a database containing descriptors generated from images at different, and usually high, resolutions. To solve this issue, we proposed a deep learning-based approach by which we empowered a ResNet-like architecture to generate resolution-robust deep features. Once trained, our models were able to generate image descriptors less brittle to resolution variations, thus being useful to fulfill a similarity search task in cross-resolution scenarios. To asses their performance, we used synthetic as well as natural low-resolution images. An immediate advantage of our approach is that there is no need for Super-Resolution techniques, thus avoiding the need to synthesize queries at higher resolutions.

Cross-resolution deep features based image search

Massoli FV;Falchi F;Gennaro C;Amato G
2020

Abstract

Deep Learning models proved to be able to generate highly discriminative image descriptors, named deep features, suitable for similarity search tasks such as Person Re-Identification and Image Retrieval. Typically, these models are trained by employing high-resolution datasets, therefore reducing the reliability of the produced representations when low-resolution images are involved. The similarity search task becomes even more challenging in the cross-resolution scenarios, i.e., when a low-resolution query image has to be matched against a database containing descriptors generated from images at different, and usually high, resolutions. To solve this issue, we proposed a deep learning-based approach by which we empowered a ResNet-like architecture to generate resolution-robust deep features. Once trained, our models were able to generate image descriptors less brittle to resolution variations, thus being useful to fulfill a similarity search task in cross-resolution scenarios. To asses their performance, we used synthetic as well as natural low-resolution images. An immediate advantage of our approach is that there is no need for Super-Resolution techniques, thus avoiding the need to synthesize queries at higher resolutions.
2020
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
978-3-030-60935-1
content-based image retrieval
face recognition
deep learning
cross-resolution
File in questo prodotto:
File Dimensione Formato  
prod_445013-doc_160026.pdf

accesso aperto

Descrizione: Postprint
Tipologia: Versione Editoriale (PDF)
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/423472
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact