Curcumin (CM) is a natural polyphenol well-known for its antioxidant and pharmaceutical properties, that can represent a renewable alternative to bisphenol A (BPA) for the synthesis of biobased polycarbonates (PC). In the presented strategy, preparation of the CM-based PC was coupled with chemical recycling of the fossil-based BPA polycarbonate (BPA-PC) conducting a two-steps trans-polymerization that replaces BPA monomer with CM or its tetrahydrogenated colorless product (THCM). In the first step of synthetic strategy, depolymerization of commercial BPA-PC was carried out with phenol as nucleophile, according to our previous procedure based on zinc derivatives and ionic liquids as catalysts, thus producing quantitatively diphenyl carbonate (DPC) e BPA. In the second step, DPC underwent a melt transesterification with CM or THCM monomers affording the corresponding bio-based polycarbonates, CM-PC and THCM-PC, respectively. THCM was prepared by reducing natural bis-phenol with cyclohexene as a hydrogen donor and characterized by 1H-NMR and MS techniques. Polymerization reactions were monitored by infrared spectroscopy and average molecular weights and dispersity of the two biobased polymers THCM-PC and CM-PC were determined by means of gel permeation chromatography (GPC). Optical properties of the prepared polymers were also measured.

Concerning synthesis of new biobased polycarbonates with curcumin in replacement of bisphenol a and recycled diphenyl carbonate as example of circular economy

Casiello M;Fusco C;D'Accolti L
2021

Abstract

Curcumin (CM) is a natural polyphenol well-known for its antioxidant and pharmaceutical properties, that can represent a renewable alternative to bisphenol A (BPA) for the synthesis of biobased polycarbonates (PC). In the presented strategy, preparation of the CM-based PC was coupled with chemical recycling of the fossil-based BPA polycarbonate (BPA-PC) conducting a two-steps trans-polymerization that replaces BPA monomer with CM or its tetrahydrogenated colorless product (THCM). In the first step of synthetic strategy, depolymerization of commercial BPA-PC was carried out with phenol as nucleophile, according to our previous procedure based on zinc derivatives and ionic liquids as catalysts, thus producing quantitatively diphenyl carbonate (DPC) e BPA. In the second step, DPC underwent a melt transesterification with CM or THCM monomers affording the corresponding bio-based polycarbonates, CM-PC and THCM-PC, respectively. THCM was prepared by reducing natural bis-phenol with cyclohexene as a hydrogen donor and characterized by 1H-NMR and MS techniques. Polymerization reactions were monitored by infrared spectroscopy and average molecular weights and dispersity of the two biobased polymers THCM-PC and CM-PC were determined by means of gel permeation chromatography (GPC). Optical properties of the prepared polymers were also measured.
2021
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Biopolymers Curcumin
Polycarbonate
Recycled bisphenol a
Recycled diphenyl carbonate
Tetrahydrocurcumin
File in questo prodotto:
File Dimensione Formato  
Polymers 2021, 13, 361.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.05 MB
Formato Adobe PDF
4.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/423784
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact