The DNA damage response (DDR) is the signaling cascade that recognizes DNA double-strand breaks (DSB) and promotes their resolution via the DNA repair pathways of Non-Homologous End Joining (NHEJ) or Homologous Recombination (HR). We and others have shown that DDR activation requires DROSHA. However, whether DROSHA exerts its functions by associating with damage sites, what controls its recruitment and how DROSHA influences DNA repair, remains poorly understood. Here we show that DROSHA associates to DSBs independently from transcription. Neither H2AX, nor ATM nor DNA-PK kinase activities are required for its recruitment to break site. Rather, DROSHA interacts with RAD50 and inhibition of MRN by Mirin treatment abolishes this interaction. MRN inactivation by RAD50 knockdown or mirin treatment prevents DROSHA recruitment to DSB and, as a consequence, also 53BP1 recruitment. During DNA repair, DROSHA inactivation reduces NHEJ and boosts HR frequency. Indeed, DROSHA knockdown also increase the association of downstream HR factors such as RAD51 to DNA ends. Overall, our results demonstrate that DROSHA is recruited at DSBs by the MRN complex and direct DNA repair toward NHEJ.

DROSHA is recruited to DNA damage sites by the MRN complex to promote non-homologous end-joining

Sabbioneda S;d'Adda di Fagagna F;Francia S
2021

Abstract

The DNA damage response (DDR) is the signaling cascade that recognizes DNA double-strand breaks (DSB) and promotes their resolution via the DNA repair pathways of Non-Homologous End Joining (NHEJ) or Homologous Recombination (HR). We and others have shown that DDR activation requires DROSHA. However, whether DROSHA exerts its functions by associating with damage sites, what controls its recruitment and how DROSHA influences DNA repair, remains poorly understood. Here we show that DROSHA associates to DSBs independently from transcription. Neither H2AX, nor ATM nor DNA-PK kinase activities are required for its recruitment to break site. Rather, DROSHA interacts with RAD50 and inhibition of MRN by Mirin treatment abolishes this interaction. MRN inactivation by RAD50 knockdown or mirin treatment prevents DROSHA recruitment to DSB and, as a consequence, also 53BP1 recruitment. During DNA repair, DROSHA inactivation reduces NHEJ and boosts HR frequency. Indeed, DROSHA knockdown also increase the association of downstream HR factors such as RAD51 to DNA ends. Overall, our results demonstrate that DROSHA is recruited at DSBs by the MRN complex and direct DNA repair toward NHEJ.
2021
Istituto di Genetica Molecolare "Luigi Luca Cavalli Sforza"
DNA DAMAGE
DROSHA
RNA
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/424708
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact