The aim of this work was to compare the traditional with a non-conventional (i.e. kernel micronisation) durum wheat milling process by monitoring the content of bound, conjugated and free phenolic acids (PAs) and the level of the total antioxidant capacity (TAC) occurring in the durum wheat pasta production chain, from seed to cooked pasta. The traditional transformation processes negatively influenced TAC and PA content (40% and 89% decrease from seed to cooked pasta, respectively), mainly during the milling process (25% and 84% decrease of TAC and PA, respectively), which has been related to the removal of external layers of kernels. Conversely, the micronisation applied on durum wheat kernels allowed to obtain whole-wheat pasta that preserved the seed endowment of antioxidant compounds even in cooked pasta. These results indicate the micronisation as a valuable approach to produce pasta with improved nutritional value and potential health-promoting effects compared to the traditional pasta.

From seed to cooked pasta: influence of traditional and non-conventional transformation processes on total antioxidant capacity and phenolic acid content

Nicoletti I;
2018

Abstract

The aim of this work was to compare the traditional with a non-conventional (i.e. kernel micronisation) durum wheat milling process by monitoring the content of bound, conjugated and free phenolic acids (PAs) and the level of the total antioxidant capacity (TAC) occurring in the durum wheat pasta production chain, from seed to cooked pasta. The traditional transformation processes negatively influenced TAC and PA content (40% and 89% decrease from seed to cooked pasta, respectively), mainly during the milling process (25% and 84% decrease of TAC and PA, respectively), which has been related to the removal of external layers of kernels. Conversely, the micronisation applied on durum wheat kernels allowed to obtain whole-wheat pasta that preserved the seed endowment of antioxidant compounds even in cooked pasta. These results indicate the micronisation as a valuable approach to produce pasta with improved nutritional value and potential health-promoting effects compared to the traditional pasta.
2018
Istituto per i Sistemi Biologici - ISB (ex IMC)
cooking
micronisation
whole-wheat pasta
milling
pasta-making
phenolic acids
total antioxidant capacity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/424897
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact