Young sea ice composed of grease and pancake ice (GPI), as well as thin floes, considered to be the most common form of sea ice fringing Antarctica, is now becoming the "new normal" also in the Arctic. A study of the rheological properties of GPI is carried out by comparing the predictions of two viscous wave propagation models: the Keller model and the close-packing (CP) model, with the observed wave attenuation obtained by SAR image techniques. In order to fit observations, it is shown that describing GPI as a viscous medium requires the adoption of an ice viscosity which increases with the ice thickness. The consequences regarding the possibility of ice thickness retrieval from remote sensing data of wave attenuation are discussed. We provide examples of GPI thickness retrievals from a Sentinel-1 C band SAR image taken in the Beaufort Sea on 1 November 2015, and three CosmoSkyMed X band SAR images taken in the Weddell Sea on March 2019. The estimated GPI thicknesses are consistent with concurrent SMOS measurements and available local samplings.

SAR image wave spectra to retrieve the thickness of grease-pancake sea ice using viscous wave propagation models

2021

Abstract

Young sea ice composed of grease and pancake ice (GPI), as well as thin floes, considered to be the most common form of sea ice fringing Antarctica, is now becoming the "new normal" also in the Arctic. A study of the rheological properties of GPI is carried out by comparing the predictions of two viscous wave propagation models: the Keller model and the close-packing (CP) model, with the observed wave attenuation obtained by SAR image techniques. In order to fit observations, it is shown that describing GPI as a viscous medium requires the adoption of an ice viscosity which increases with the ice thickness. The consequences regarding the possibility of ice thickness retrieval from remote sensing data of wave attenuation are discussed. We provide examples of GPI thickness retrievals from a Sentinel-1 C band SAR image taken in the Beaufort Sea on 1 November 2015, and three CosmoSkyMed X band SAR images taken in the Weddell Sea on March 2019. The estimated GPI thicknesses are consistent with concurrent SMOS measurements and available local samplings.
2021
Istituto per il Rilevamento Elettromagnetico dell'Ambiente - IREA
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
SAR
viscous wave propagation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/425148
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact