In this paper, we consider local detection of a target in hyperspectral imaging and we assume that the spectral signature of interest is buried in a background which follows an elliptically contoured distribution with unknown parameters. In order to infer the background parameters, two sets of training samples are available: one set, taken from pixels close to the pixel under test, shares the same mean and covariance while a second set of farther pixels shares the same covariance but has a different mean. When the whole data samples (pixel under test and training samples) follow a matrix-variate t distribution, the one-step generalized likelihood ratio test (GLRT) is derived in closed-form. It is shown that this GLRT coincides with that obtained under a Gaussian assumption and that it guarantees a constant false alarm rate. We also present a two-step GLRT where the mean and covariance of the background are estimated from the training samples only and then plugged in the GLRT based on the pixel under test only.

Adaptive target detection in hyperspectral imaging from two sets of training samples with different means

Matteoli S
2021

Abstract

In this paper, we consider local detection of a target in hyperspectral imaging and we assume that the spectral signature of interest is buried in a background which follows an elliptically contoured distribution with unknown parameters. In order to infer the background parameters, two sets of training samples are available: one set, taken from pixels close to the pixel under test, shares the same mean and covariance while a second set of farther pixels shares the same covariance but has a different mean. When the whole data samples (pixel under test and training samples) follow a matrix-variate t distribution, the one-step generalized likelihood ratio test (GLRT) is derived in closed-form. It is shown that this GLRT coincides with that obtained under a Gaussian assumption and that it guarantees a constant false alarm rate. We also present a two-step GLRT where the mean and covariance of the background are estimated from the training samples only and then plugged in the GLRT based on the pixel under test only.
2021
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
target detection
hyperspectral
adaptive algortihms
remote sensing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/426309
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact