In this work we introduce a method for the recognition, modelling and interactive manipulation of graphical motifs, symbols or artistic elements that are represented by a composition of plane curves. Our method bases on Hough transform (HT) concepts, in particular on its generalisation to algebraic curves. We recognise complex curves and their compositions starting from images or point clouds, we represent them in implicit or parametric form, and their parameters are calculated together with their relationships. Besides the recognition of curves and modelling by algebraic equations, we propose a visualisation and manipulation tool developed on a multi-touch table. The objective of this application is to support an interactive manipulation of any geometric motifs or symbols with or without imposing the constraints derived from the identified relations among the curve parameters. Finally, we validate the proposed method showing its application to three detailed case studies, which differ in type and creation mode.

Recognition, modelling and interactive manipulation of motifs or symbols represented by a composition of curves

C Romanengo;E Brunetto;S Biasotti;C E Catalano;B Falcidieno
2020

Abstract

In this work we introduce a method for the recognition, modelling and interactive manipulation of graphical motifs, symbols or artistic elements that are represented by a composition of plane curves. Our method bases on Hough transform (HT) concepts, in particular on its generalisation to algebraic curves. We recognise complex curves and their compositions starting from images or point clouds, we represent them in implicit or parametric form, and their parameters are calculated together with their relationships. Besides the recognition of curves and modelling by algebraic equations, we propose a visualisation and manipulation tool developed on a multi-touch table. The objective of this application is to support an interactive manipulation of any geometric motifs or symbols with or without imposing the constraints derived from the identified relations among the curve parameters. Finally, we validate the proposed method showing its application to three detailed case studies, which differ in type and creation mode.
2020
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
978-3-03868-124-3
Computing methodologies: Shape modeling; Representation of mathematical objects; Human-centered computing
Human computer interaction (HCI); Interactive systems and tools
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/427192
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact