Conductance of CO2 across the mesophyll (Gm) frequently constrains photosynthesis (PN) but cannot be measured directly. We examined Gm of cherry (Prunus avium L.) subjected to severe drought using the variable J method and carbon-isotopic composition (? 13C) of sugars from the centre of the leaf, the leaf petiole sap, and sap from the largest branch. Depending upon the location of the plant from which sugars are sampled, Gm may be estimated over scales ranging from a portion of the leaf to a canopy of leaves. Both the variable J and ? 13C of sugars methods showed a reduction in Gm as soil water availability declined. The ? 13C of sugars further from the source of their synthesis within the leaf did not correspond as closely to the diffusive and C-isotopic discrimination conditions reflected in the instantaneous measurement of gas exchange and chlorophyll-fluorescence utilised by the variable J approach. Post-photosynthetic fractionation processes and/or the release of sugars from stored carbohydrates (previously fixed under different environmental and C-isotopic discrimination conditions) may reduce the efficacy of the ? 13C of sugars from leaf petiole and branch sap in estimating Gm in a short-term study. Consideration should be given to the spatial and temporal scales at which Gm is under observation in any experimental analysis.

A comparison of the variable j and carbon-isotopic composition of sugars methods to assess mesophyll conductance from the leaf to the canopy scale in drought-stressed cherry

Marino G;Scartazza A;Centritto M
2020-01-01

Abstract

Conductance of CO2 across the mesophyll (Gm) frequently constrains photosynthesis (PN) but cannot be measured directly. We examined Gm of cherry (Prunus avium L.) subjected to severe drought using the variable J method and carbon-isotopic composition (? 13C) of sugars from the centre of the leaf, the leaf petiole sap, and sap from the largest branch. Depending upon the location of the plant from which sugars are sampled, Gm may be estimated over scales ranging from a portion of the leaf to a canopy of leaves. Both the variable J and ? 13C of sugars methods showed a reduction in Gm as soil water availability declined. The ? 13C of sugars further from the source of their synthesis within the leaf did not correspond as closely to the diffusive and C-isotopic discrimination conditions reflected in the instantaneous measurement of gas exchange and chlorophyll-fluorescence utilised by the variable J approach. Post-photosynthetic fractionation processes and/or the release of sugars from stored carbohydrates (previously fixed under different environmental and C-isotopic discrimination conditions) may reduce the efficacy of the ? 13C of sugars from leaf petiole and branch sap in estimating Gm in a short-term study. Consideration should be given to the spatial and temporal scales at which Gm is under observation in any experimental analysis.
2020
Istituto per la Protezione Sostenibile delle Piante - IPSP
Istituto di Ricerca sugli Ecosistemi Terrestri - IRET
Prunus avium L.; photosynthesis; transport conductance; 13C stable isotope; water deficit; photosystem II quantum efficiency; sugars
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/427622
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact